Collision Detection

Detecting Collisions Between Two Objects

1. Do as many fast rejections as you can
2. Do hierarchical fast rejections
3. Discrete: compare all edges of Object A against all faces of Object B
4. Continuous: create “pseudo-edges” by connecting respective points in Object A across the time step, then compare all these pseudo-edges of Object A against all faces of Object B

Try to Simplify the Intersection Test– Break the Scene into a Grid

Try to Simplify the Intersection Test– A Bounding Sphere

Try to Simplify the Intersection Test- Bounding Spheres

These spheres overlap if:
$$\text{Distance}(C_1, C_2) < R_1 + R_2$$

To avoid the square root:
$$\text{Distance}^2(C_1, C_2) < (R_1 + R_2)^2$$
Try to Simplify the Intersection Test -- A Bounding Box

Quickly compare two objects by fitting each with a bounding box and then comparing the two bounding boxes.

These boxes do not overlap if:

\[\text{Xmax}_1 < \text{Xmin}_2 \quad \text{or} \quad \text{Ymax}_1 < \text{Ymin}_2 \]

These boxes do overlap if:

\[\text{Xmax}_2 > \text{Xmin}_1 \quad \text{and} \quad \text{Ymax}_2 > \text{Ymin}_1 \]

Try to Simplify the Intersection Test -- Bounding Boxes

1. Axis-Aligned Bounding Box (AABB)
 - Check for overlap by looking for overlap in just X, then just Y, then just Z.

2. Arbitrary-Oriented Bounding Box (AOBB)
 - This is a tighter fit around the object, but the overlap comparison is more involved.

Discrete -- You Can Easily Tell If a Point is Inside a Convex Polyhedron

- Assume that all surface normals point outwards (usual convention).
- Use the Distance-from-a-Point-to-a-Plane formula for each face of the polyhedron.
- If all distances are negative, the point is inside the convex polyhedron.
- What if the polyhedron is not convex?
 - Put a Convex Hull around the polyhedron and test against that.
 - If the point is not inside the convex hull, then it is not inside the polyhedron either. If it is inside the convex hull, then a more detailed analysis is needed.

Distance from a Point to a Plane

The equation of the plane is:

\[(x, y, z) \cdot (n_x, n_y, n_z) + D = 0 \]

which expands out to become the more familiar form:

\[Ax + By + Cz + D = 0 \]

The distance from the point P to the plane is based on the plane equation:

\[d = \frac{|(P - Q) \cdot n|}{|n^2|} \]

The dot product is answering the question "How much of (P-Q) is in the normal direction?". Note that this gives a signed distance. If \(d > 0 \), then P is on the same side of the plane as the normal.
Comparing an Edge on Object A against a Face on Object B

If point P wants to be a point in the plane, then:
\[(P, P, P, Q, Q, Q) \cdot (n, n, n, n, n, n) = 0\]

If we substitute the parametric expression for P into the plane equation, then the only thing we don't know in that equation is t. Knowing t will let us compute the \((x,y,z)\) of the actual intersection using the line equation. If \(t^*=\) has a zero in the denominator, then that tells us that \(t^*=\infty\), and the line must be parallel to the plane.

This gives us the point of intersection with the infinite plane. We would now use the method covered a few slides ago to see if P lies inside the triangle in question.

The equation of the line segment is:
\[P = (1-t)P_0 + tP_1\]

Is a Point inside a Triangle?

Let:
\[n = (R-Q) \times (S-Q)\]
\[n_y = (R-Q) \times (P-Q)\]
\[n_x = (S-R) \times (P-R)\]
\[n_z = (Q-S) \times (P-S)\]

If \((n \cdot n_x), (n \cdot n_y), and (n \cdot n_z)\) are all positive, then P is inside the triangle QRS.

Voxelization – another way to do Collision Detection?

If Find a Discrete Interference
Do a binary search across the time step until you find the time of collision

If Find a Continuous Interference
Connect all points across time and look for the minimum t in an intersection with the boundary