
8/15/2021

1

mjb – August 15, 2021
Computer Graphics

1

Simple Keyframe Animation

keyframe.pptx

This work is licensed under a Creative
Commons Attribution-NonCommercial-
NoDerivatives 4.0 International License

Mike Bailey

mjb@cs.oregonstate.edu

mjb – August 15, 2021
Computer Graphics

2
Approaches to Animation

1. Motion Capture (“MoCap”)

2. Using the laws of physics (we’ll use this in the spring-based motion)

3. Using functional (target-driven) animation (we’ll use this in collision avoidance)

4. Using keyframing

mjb – August 15, 2021
Computer Graphics

3Keyframing

Keyframing involves creating certain key positions for the objects in the scene,
and then the program later interpolating the animation frames in between the
key frames.

In hand-drawn animation, the key frames are developed by the senior
animators, and the in-between frames are developed by the junior animators.

In our case, you are going to be the senior animator, and the computer will do
the in-betweening.

But, first we need to look into the mathematics of smooth curves . . .

mjb – August 15, 2021
Computer Graphics

4
Bézier Curves: the Derivation

01 0 1(1)P t P tP

P0

P1

1 1

One parametric line:

Note: we are not actually going to use Bézier curves for the animation, but
they are a good place to start to understand how smooth curves work.

mjb – August 15, 2021
Computer Graphics

5
Bézier Curves: the Derivation

01 0 1

12 1 2

(1)

(1)

P t P tP

P t P tP

P0

P1

P2

1 1

Two parametric lines:

mjb – August 15, 2021
Computer Graphics

6
Bézier Curves: the Derivation

01 0 1

12 1 2

012 01 12

2 2
0 1 2

(1)

(1)

(1)

(1) 2 (1)

P t P tP

P t P tP

P t P tP

t P t t P t P

P0

P1

P2

1 1
1 2 1

Two parametric lines, blended:

1 2

3 4

5 6

8/15/2021

2

mjb – August 15, 2021
Computer Graphics

7
Bézier Curves: the Derivation

01 0 1

12 1 2

012 01 12

2 2
0 1 2

123 12 23

2 2
1 2 3

(1)

(1)

(1)

(1) 2 (1)

(1)

(1) 2 (1)

P t P tP

P t P tP

P t P tP

t P t t P t P

P t P tP

t P t t P t P

P0

P1

P2

P3

1 1
1 2 1

Three parametric lines, blended:

mjb – August 15, 2021
Computer Graphics

8
Bézier Curves: the Derivation

01 0 1

12 1 2

012 01 12

2 2
0 1 2

123 12 23

2 2
1 2 3

(1)

(1)

(1)

(1) 2 (1)

(1)

(1) 2 (1)

P t P tP

P t P tP

P t P tP

t P t t P t P

P t P tP

t P t t P t P

0123 012 123

3 2 2 3
0 1 2 3

(1)

(1) 3 (1) 3 (1)

P t P tP

t P t t P t t P t P

P0

P1

P2

P3

1 1
1 2 1

1 3 3 1

Three parametric lines, blended:

mjb – August 15, 2021
Computer Graphics

9

3 2 2 3
0 1 2 3() (1) 3 (1) 3 (1)P t t P t t P t t P t P

Bézier Curves: Drawing and Sculpting

t = 0., .02, .04, .06, …, .98, 1.0

mjb – August 15, 2021
Computer Graphics

10
So How Do Smooth Curves Work in Computer Graphics?

A Small Amount of Input Change Results in a
LargeAmount of Output Change

mjb – August 15, 2021
Computer Graphics

11

3 2 2 3
0 1 2 3() (1) 3 (1) 3 (1)P t t P t t P t t P t P

The General Form of Cubic Curves

2 3()P t A Bt Ct Dt

0

0 1

0 1 2

0 1 2 3

3 3

3 6 3

3 3

A P

B P P

C P P P

D P P P P

In this form, you need to determine 4 quantities (A, B, C, D) in order to use
the equation. That means you have to provide 4 pieces of information. In
the Bézier curve, this happens by specifying the 4 points.

Rearranging gives A, B, C, and D for the Bézier curve:

Now the question is: are there other ways to control A, B, C, and D?
mjb – August 15, 2021

Computer Graphics

12
Another Approach: Coons (also called Hermite) Cubic Curves

Another approach to specifying the 4 pieces of information would be to give a
start point, an end point, a start parametric slope, and an end parametric slope.

0

0

0 1 0 1

0 1 0 1

3 3 2

2 2

A P

B P

C P P P P

D P P P P

2 3P A Bt Ct Dt

If we do this, then the equation of the curve is:

0P 1P

0
0

dP
P

dt

1
1

dP
P

dt

where:

●

●

●

● ●

●
●

7 8

9 10

11 12

8/15/2021

3

mjb – August 15, 2021
Computer Graphics

13
Now, Let’s Apply this to the Y Translation of a Keyframe Animation

To make this simple to use, our goal is to just specify the keyframe values, not
the slopes. We will let the computer compute the slopes for us, which will then
result in being able to compute the in-between frames.

mjb – August 15, 2021
Computer Graphics

14
Many Professional Animation Packages Make You Sculpt the Slopes

(but we won’t . . .)

Blender:

mjb – August 15, 2021
Computer Graphics

15

Frame #

Y

3000 525450 800600200

The “Y vs. Frame” Curve Looks Like This

mjb – August 15, 2021
Computer Graphics

16

Frame #

Y

3000 525450200

650

400

650 650

Getting the Two End Slopes

To get the slope at a keyframe point, draw a line between one
keyframe back from that one and one keyframe ahead

mjb – August 15, 2021
Computer Graphics

17
Do This Same Thing for the X, Y, and Z Translations

and the X, Y, and Z Rotations

X

Y

Z

θX

θy

θz
mjb – August 15, 2021

Computer Graphics

18

class Keytimes:

void AddTimeValue(float time, float value);
float GetFirstTime();
float GetLastTime();
int GetNumKeytimes();
float GetValue(float time);
void PrintTimeValues();

Instead of Key Frames, I Like Specifying Key Times Better

And, so, I created a C++ class to do it all for you

13 14

15 16

17 18

8/15/2021

4

mjb – August 15, 2021
Computer Graphics

19

Keytimes Xpos;

int
main(int argc, char *argv[])
{

Xpos.AddTimeValue(0.0, 0.000);
Xpos.AddTimeValue(2.0, 0.333);
Xpos.AddTimeValue(1.0, 3.142);
Xpos.AddTimeValue(0.5, 2.718);
fprintf(stderr, "%d time-value pairs:\n", Xpos.GetNumKeytimes());
Xpos.PrintTimeValues();

fprintf(stderr, "Time runs from %8.3f to %8.3f\n", Xpos.GetFirstTime(), Xpos.GetLastTime());

for(float t = 0.; t <= 2.01; t += 0.1)
{

float v = Xpos.GetValue(t);
fprintf(stderr, "%8.3f\t%8.3f\n", t, v);

}
}

Instead of Key Frames, I Like Specifying Key Times Better

mjb – August 15, 2021
Computer Graphics

20

(0.00, 0.000)
(0.00, 0.000) (2.00, 0.333)
(0.00, 0.000) (1.00, 3.142) (2.00, 0.333)
(0.00, 0.000) (0.50, 2.718) (1.00, 3.142) (2.00, 0.333)
4 time-value pairs
Time runs from 0.000 to 2.000

0.000 0.000
0.100 0.232
0.200 0.806
0.300 1.535
0.400 2.234
0.500 2.718
0.600 2.989
0.700 3.170
0.800 3.258
0.900 3.250
1.000 3.142
1.100 2.935
1.200 2.646
1.300 2.302
1.400 1.924
1.500 1.539
1.600 1.169
1.700 0.840
1.800 0.574
1.900 0.397
2.000 0.333

Instead of Key Frames, I Like Specifying Key Times Better

mjb – August 15, 2021
Computer Graphics

21
Using the System Clock in Display() for Timing

#define MSEC 10000 // i.e., 10 seconds
Keytimes Xpos, Ypos, Zpos;
Keytimes ThetaX, ThetaY, ThetaZ;

. . .

if(AnimationIsOn)
{

// # msec into the cycle (0 - MSEC-1):
int msec = glutGet(GLUT_ELAPSED_TIME) % MSEC;

// turn that into a time in seconds:
float nowTime = (float)msec / 1000.;
glPushMatrix();

glTranslatef(Xpos.GetValue(nowTime), Ypos.GetValue(nowTime), Zpos.GetValue(nowTime));
glRotatef(ThetaX.GetValue(nowTime), 1., 0., 0.);
glRotatef(ThetaY.GetValue(nowTime), 0., 1., 0.);
glRotatef(ThetaZ.GetValue(nowTime), 0., 0., 1.);
<< draw the object >>

glPopMatrix();
}

Number of msec in the
animation cycle

19 20

21

