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Matrices

A matrix is a 2D array of numbers, arranged in rows that go
across and columns that go down:

A column:

—— 4columns —

1 2 3 4
v |56 78
9 10 11 12

Matrix sizes are termed “#rows x #columns”, so this is a 3x4 matrix ‘
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Square Matrices

A square matrix has the same number of rows and columns

—— 3columns —»

1 2 3
145 6
7 8 9

This is a 3x3 matrix
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Matrix Transpose
A matrix transpose is formed by interchanging the rows and columns:
r |1 5 9
1 2 3 4
2 6 10
5 6 7 8| =
3 7 11
9 10 11 12
4 8 12
‘ This is a 3x4 matrix ‘ ‘ This is a 4x3 matrix ‘
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Row and Column Matrices

A matrix can have a single row (a “row matrix”) or just a
single column (a “column matrix”)”

4

[1 2 3] 5
6

This is a 3x1 matrix

Sometimes these are called row and column vectors, but that ‘

overloads the word “vector” and we won't do it...
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Matrix Multiplication

The basic operation of matrix multiplication is to pair-wise
multiply a single row by a single column

* * * 4
[1 2 3_| * S5t —a1+52+63—> 32
A 6 C

B
1x3 3x1 1x1
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Matrix Multiplication
Two matrices, A and B, can be multiplied if the number of columns in A equals

the number of rows in B. The result is a matrix that has the same number of
rows as A and the same number of columns as B.
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Matrix Multiplication in Software
Here’s how to remember how to do it:
4
[t 23] s Is =| =%
1. C=A*B
A 6
2. [IxJ]=[IxK]*[KxJ] B c
SIxy = XK KT
teaagannt® "--" .."'I-I--.--l-“‘ “-n"
. P q_ . * s q
(CLillj1=  ALillk]*BLKI[j]; |
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Matrix Multiplication in Software

4 [
235 s o =
A u L }
B h Cc
Note that:
Clillj1=0;

for(int k = 0; k < numAcaols; k++ )

CLIT+=ALI]k]*BLKIj T,

Is like saying:

CLil[j]=Al0] " B[O]G] + A[1] * BIIG] + Ali]i2] * B[2][] + Afl[3] * B3]l ;
?ﬁ-.
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Matrix Multiplication in Software ®
; T |
bz3 ls = ®
A " |
B c
for(inti=0; i < numArows; i++)
{
for(int j =0; j < numBcols; j++)
CLillj1=0;
for(int k = 0; k < numAcols; k++)
CLilljl+=ALil[k]1*BLKkI[j];
}
ety Note: numAcols must == numBrows !
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Matrix Multiplication where B and C are Column Matrices

for(inti=0; i < numArows; i++)

Cl[i]=0;
for(int k = 0; k < numAcols; k++)

Cl[i]+=A[il[k]1*B[k];

To help you remember this, think of the “C[ i ]* lines as:
Clijfo]=0;

CLIJO1+=ALillk]*BLKIO
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A Special Matrix

Consider the matrix * column situation below:

C, 0 -4 4 (B

Ct=| 4 0 -4 1B

C.] |-4, 4, 0 ||B
This gives:

C=(A,B.~AB,,AB ~AB ,AB ~AB)

‘ Which is actually the Cross Product AxB: ‘

f=(4,.4,.4,)

B=18,5.5)

AxB=(A B ~AB AB -AB, 4B - AB)
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Determinants

The determinant is important in graphics applications. It represents sort of
a “scale factor”, when the matrix is used to represent a transformation.

The determinant of a 2x2 matrix is easy:

A B
det =A*D-B*C
C D
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Determinants

The determinant of a 3x3 matrix is done in terms of its component 2x2 sub-matrices:

A B C
detfD E F|=
G H I

E F D F D E
A*det — B#det + C*det
H I G I G H

= A*(EI - FH)— B*(DI - FG) + C *(DH - EG)
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Inverses

The determinant of a 3x3 matrix is done in terms of its component
2x2 sub-matrices:

E F D F D E
-1 det det det
A B C H I G I G H

D E F| = B C 4 C
G H I detHIdetGI

The determinant of 4x4 and larger matrices can be done in a similar way, but
usually isn’t. Gauss Elimination is more efficient.
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Inverses
The matrix inverse is also important in graphics applications because it
represents the undoing of the original transformation matrix. It is also
useful in solving systems of simultaneous equations.
The inverse of a 2x2 matrix is the transpose of the cofactor matrix divided
by the determinant:
4 B 1 D -B
C D Ax*D-B*C|-C A4
Uruélm!’_l‘llc
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Sidebar: The i-j-k order doesn’t matter as long as the “C[i ][ j ] +=“
line is right — different ordering affects performance

16

for(intj=0;j < numBcols; j++)
for(int k = 0; k < numAcols; k++) ////
{

Clillil+=Alil[k]1*B[kI[j];

for(inti=0; i < numArows; i++) \
{ 7 ) \\\\

We'll talk about this in CS 475/575 — Parallel Programming
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Performance vs. Matrix Size (MegaMultiplies / Sec)
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