Solving a Nonlinear Equation: Newton’s Method

Mike Bailey
mjb@cs.oregonstate.edu
Oregon State University

Newton’s Method for Solving a Nonlinear Equation

Scenario: You have an equation $y(x) = 0$, but it is too messy to solve directly. You do have an initial guess of the correct value of x. It is close, but it is wrong.

For example, solve this equation for x:

$$y(x) = \cos^3 x + \log_{10} x = 0$$

Starting with an initial guess of $x = 6$
You want to just solve the equation, not graph it first. But, for this discussion, we will cheat and look at the graph too.

Newton's Method for Solving a Nonlinear Equation

You can take the x you have, x_{have}, and plug it into the equation to produce y_{have} and thus see how close you are to $y = 0$. But now what?

From calculus, we know that:

$$\frac{dy}{dx} \approx \frac{\Delta y}{\Delta x} \quad \text{or} \quad \frac{dy}{dx} \Delta x = \Delta y$$

So that:

$$\Delta x = \Delta y = y_{\text{want}} - y_{\text{have}} = 0 - y_{\text{have}}$$

which gives us:

$$\Delta x = -\frac{y_{\text{have}}}{\frac{dy}{dx}}$$

We will use that to find the next value of x to try, and then repeat the process:

$$x'_{\text{have}} = x_{\text{have}} + \Delta x = x_{\text{have}} + -\frac{y_{\text{have}}}{\frac{dy}{dx}}$$

$$y'_{\text{have}} = y(x'_{\text{have}})$$
Watching Newton’s Method Work

\[y = \cos^3 x + \log_{10} x = 0 \]

\[\frac{dy}{dx} = -3 \sin x \cos^2 x + \frac{1}{x \ln(10)} \]

<table>
<thead>
<tr>
<th>(x_{\text{have}})</th>
<th>(y_{\text{have}})</th>
<th>(dy/dx)</th>
<th>(x_{\text{next}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.00000</td>
<td>1.66336</td>
<td>0.84518</td>
<td>4.03196</td>
</tr>
<tr>
<td>4.03196</td>
<td>0.35651</td>
<td>1.03069</td>
<td>3.68607</td>
</tr>
<tr>
<td>3.68607</td>
<td>-0.05934</td>
<td>1.25483</td>
<td>3.73336</td>
</tr>
<tr>
<td>3.73336</td>
<td>0.00040</td>
<td>1.26907</td>
<td>3.73304</td>
</tr>
<tr>
<td>3.73304</td>
<td>0.00000</td>
<td>1.26903</td>
<td>3.73304</td>
</tr>
</tbody>
</table>

Here’s what is really going on
What would have happened if we had started with $x=2.75$?

![Graph showing the path with $x=2.75$.]
What would have happened if we had started with $x=0.55$?

\[\begin{array}{cccc}
 x_{\text{have}} & y_{\text{have}} & dydx & x_{\text{next}} \\
 0.55000 & 0.35998 & -0.35004 & 1.57839 \\
 1.57839 & 0.19821 & 0.27498 & 0.85755 \\
 0.85755 & 0.21336 & -0.46480 & 1.31659 \\
 1.31659 & 0.13535 & 0.14624 & 0.39100 \\
 0.39100 & 0.38242 & 0.13344 & -2.47476 \\
 -2.47476 & \#NUM! & 0.97020 & \#NUM! \\
 \#NUM! & \#NUM! & \#NUM! & \#NUM! \\
\end{array} \]
A Collision Detection Problem Example

Let's say we have a nonlinear surface. How close is the point (3,1) to that surface?

\[P=(3,1) \]

Using our friend, the dot product:

\[(P_x - Q_x, P_y - Q_y) \cdot \text{slope} = 0\]

where the vector slope is:

\[
\text{slope} = (dx,dy) = (1, \frac{dy}{dx}) = (1, \frac{d\sin x}{dx}) = (1, \cos x)
\]

substituting for \(Q_x, Q_y\) and the slope:

\[f(x) = (P_x - x, P_y - \sin x) \cdot (1, \cos x) = 0 \]

and expanding:

\[f(x) = (P_x - x) + \cos x \cdot (P_y - \sin x) = 0 \]

Note that in this case, we are solving \(f(x)=0\), not \(y(x)=0\)!
A Collision Detection Problem Example

\[f(x) = (P_x - x) + \cos x \ast (P_y - \sin x) = 0 \]

<table>
<thead>
<tr>
<th>xhave</th>
<th>yhave</th>
<th>fhave</th>
<th>dfdx</th>
<th>xnext</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0000</td>
<td>0.84147</td>
<td>2.08565</td>
<td>-1.42532</td>
<td>2.46328</td>
</tr>
<tr>
<td>2.46328</td>
<td>0.62748</td>
<td>0.24666</td>
<td>-1.84002</td>
<td>2.59733</td>
</tr>
<tr>
<td>2.59733</td>
<td>0.51778</td>
<td>-0.00066</td>
<td>-1.98158</td>
<td>2.59235</td>
</tr>
<tr>
<td>2.59235</td>
<td>0.52204</td>
<td>-0.00001</td>
<td>-1.97699</td>
<td>2.59234</td>
</tr>
<tr>
<td>2.59234</td>
<td>0.52205</td>
<td>0.00000</td>
<td>-1.97698</td>
<td>2.59234</td>
</tr>
</tbody>
</table>

\[\text{dist} = \sqrt{(3 - 2.59234)^2 + (1 - .52205)^2} \]

\[\text{dist} = .62819 \]