Solving a Nonlinear Equation:
Newton's Method

Mike Bailey
mjb@cs.oregonstate.edu

Scenario: You have an equation \(y(x) = 0 \), but it is too messy to solve directly. You do have an initial guess of the correct value of \(x \). It is close, but it is wrong.

For example, solve this equation for \(x \):

\[
y(x) = \cos^3 x + \log_{10} x = 0
\]

Starting with an initial guess of \(x = 6 \)

You can take the \(x \) you have, \(x_{\text{have}} \), and plug it into the equation to produce \(y_{\text{have}} \) and thus see how close you are to \(y = 0 \). But now what?

From calculus, we know that:

\[
\frac{dy}{dx} = \Delta y = \Delta x
\]

We will use that to find the next value of \(x \) to try, and then repeat the process:

\[
\Delta x = y_{\text{have}} - y(\Delta x) = 0
\]

which gives us:

\[
\Delta x = -\frac{y_{\text{have}}}{dy/dx}
\]

We will use that to find the next value of \(x \) to try, and then repeat the process:

\[
x_{\text{next}} = x_{\text{have}} + \Delta x = x_{\text{have}} + \frac{-y_{\text{have}}}{dy/dx}
\]

We can keep repeating this process to get closer and closer to the actual value of \(x \).
A Collision Detection Problem Example

Let's say we have a nonlinear surface. How close is the point (3,1) to that surface?

Using our friend, the dot product:

\[(P_y - Q_y, P_x - Q_x) \cdot \text{slope} = 0\]

where the vector slope is:

\[\text{slope} = (dx, dy) = \left(1, \frac{dy}{dx}\right) = (1, \sin(x)) \cdot (1, \cos(x))\]

Substituting for Qx, Qy, and the slope:

\[f(x) = (P_y - x, P_x - \sin(x)) \cdot (1, \cos(x)) = 0\]

and expanding:

\[f(x) = (P_x - x) + \cos(x) \cdot (P_y - \sin(x)) = 0\]

Note that in this case, we are solving \(f(x)=0 \), not \(y(x)=0 \)!
A Collision Detection Problem Example

\[
f(x) = (P_x - x) + \cos x \cdot (P_y - \sin x) = 0
\]

\[
\cos x = \frac{x - x_{\text{next}}}{\text{dist}}
\]

\[
f(x) = \cos x \cdot \text{dist} - x + x_{\text{next}} = 0
\]

\[
\text{dist} = \sqrt{(3 - 2.59234)^2 + (1 - 0.52205)^2}
\]

\[
\text{dist} = 0.62819
\]