

	SI Physics Units (Inter	rnational System of Unit	ts)
	Quantity	Units	
	Linear position	Meters	
	Linear velocity	Meters/second	
	Linear acceleration	Meters/second ²	
	Force	Newtons (kg·m/s ²)	
	Energy	Joules (N·m)	
	Power	Watts (J/s)	
	Mass	Kilograms	
	Weight	Newtons	
	Density	Kilograms/meter ³	
	Time	Seconds	
	Pressure	Pascals (N/m ²)	
	Momentum	Kilograms-meters/second	
	Angular position	Radians	
	Angular velocity	Radians/second	
	Angular acceleration	Radians/second ²	
RIADA	Moment (=torque)	Newton-meters	
	Moment of Inertia	Kilogram-meters ³	
Dregon State	Temperature	° Kelvin	

		6
	Some Useful Conversions	
	 A gram is about the mass of a paper clip 	
	• A nickel has a mass of about 5 grams	
	• A liter is half of a 2-liter soda bottle, or about a fourth of a gallon of milk	
	• A kilogram is a little more than twice as much as a pound (on Earth)	
	• A Newton is about ¼ of a pound	
	• A meter is a little more than a yard	
	• A kilometer is about $\frac{5}{8}$ of a mile	
	• Water freezes at 0° Celsius	
	• A comfortable day is around 24° Celsius	
	• A really hot day is around 35° Celsius	
C	Your body temperature is about 37 ^o Celsius	
	njb – July	30, 2021

Fu	n facts gra	witational acceleration or	n other b	odies	
	Body	(m/sec ²)	g's		
	Mercury	3.70	0.38		
	Venus	8.87	0.90		
	Earth	9.81	1.00		
	Moon	1.62	0.17		
	Mars	3.71	0.38		
	Jupiter	24.79	2.53		
	Saturn	10.44	1.06		
	Uranus	8.69	0.89		
	Neptune	11.15	1.14		
Oregon State University Computer Graphics	https://w	ww.universetoday.com/35565/gravity-on	-other-planets	- s/ mit	luly 30, 202

3. Now deal with the X component. What equation relates distance traveled to initial velocity and (zero) acceleration?

21

mjb - July 30, 2021

$$d_x = d_{x0} + v_{x0}t$$

4. Plug in the *t* you got in step #2. How far did the projectile travel?

$$d_x = 0 + 10t$$

5. Now deal with the maximum height. What is the Y velocity when the projectile reaches the maximum height?

0.0

6. What equation relates velocity achieved to initial velocity and distance travelled? (Hint: there is one that doesn't need *t*.)

$$v_{1}^{2} = v_{0}^{2} + 2a(d_{1} - d_{0})$$
7. Solve it for $(d_{1} - d_{0})$.
0² = 10² - 210(d_{1} - d_{0})
Oregon State
University
Computer Graphics

	The Physics of Bouncing Against a Floor or Wall	2
void		
Bounce	(float dt)	
{		
wh	ile(dt > EPSILON)	
{		
	float tmin = dt; // minimum time to do something	
	int which = NOTHING_HIT; // which reason was it for doing the something:	
	float tleft = ????;	
	if (tleft > 0. && tleft < tmin) $x + v t = x_{i} + radius$	
	{	
	tmin = tleft; $r + radius - r$	
	which = HIT_LEFT; $t = \frac{x_{left} + 7uuus - x_{left}}{x_{left} + 7uuus - x_{left}}$	
	$l_{left} = $	
	flact trickt = 2222: // time to bit the right well	
	noat tright = ????; // time to hit the right wall	
	float tfloor1 = ????' // time to hit the floor	
	float tfloor2 = ????; // time to hit the floor (note there are 2 answers)	
	// tmin is now set to the smallest positive of: dt, tleft, tright, tfloor1, tfloor2	
	// which is set to:	
	// NOTHING_HIT, HIT_LEFT, HIT_RIGHT, HIT_FLOOR1, or HIT_FLOOR2	
	// to show what was the first thing hit	
University	1	-
muter Gr	aphics	

