SI Physics Units (International System of Units)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear position</td>
<td>Meters</td>
</tr>
<tr>
<td>Linear velocity</td>
<td>Meters/second</td>
</tr>
<tr>
<td>Linear acceleration</td>
<td>Meters/second²</td>
</tr>
<tr>
<td>Force</td>
<td>Newtons</td>
</tr>
<tr>
<td>Energy</td>
<td>Joules</td>
</tr>
<tr>
<td>Power</td>
<td>Watts</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilograms</td>
</tr>
<tr>
<td>Weight</td>
<td>Newtons</td>
</tr>
<tr>
<td>Quantity</td>
<td>Kilograms/meter²</td>
</tr>
<tr>
<td>Time</td>
<td>Seconds</td>
</tr>
<tr>
<td>Pressure</td>
<td>Newtons/meter²</td>
</tr>
<tr>
<td>Momentum</td>
<td>Kilograms-meters/second</td>
</tr>
<tr>
<td>Angular position</td>
<td>Radians</td>
</tr>
<tr>
<td>Angular velocity</td>
<td>Radians/second</td>
</tr>
<tr>
<td>Angular acceleration</td>
<td>Radians/second²</td>
</tr>
<tr>
<td>Moment (torque)</td>
<td>Newtons-meters</td>
</tr>
<tr>
<td>Moment of inertia</td>
<td>Kilograms-meter²</td>
</tr>
<tr>
<td>Temperature</td>
<td>º Celsius</td>
</tr>
</tbody>
</table>

Some Useful Conversions

- 1 meter = 39.37 inches = 3.28 feet
- 1 mile = 1,610 meters = 1.610 kilometers
- 1 mile per hour = 1.467 feet per second
- 1 mile per hour = 0.447 meters per second
- 1 gallon = 3.79 liters
- 1 cubic foot = 7.48 gallons = 28.35 liters
- 1 kilogram = 2.2 pounds (mass, at Earth’s surface)
- 1 Newton = 0.224 pounds (force)
- 1 pound = 4.45 Newtons (force)
- 1 radian = 57.3º

What’s the Difference Between Mass and Weight?

Mass is the resistance to acceleration and deceleration. You can also think of it as inertia – how difficult it is to accelerate a wagon with something in it.

Weight is the force pulling you towards the center of whatever planetary body you happen to be standing on.

On the moon, your mass would be the same as it is on Earth. It would still require the same amount of force to push you in a (frictionless) wagon.

On the moon, however, your weight would be about 1/6 of what it is on Earth.

Because most of us are stuck on Earth, within a mile or two of sea level, in common practice, “mass” and “weight” designate about the same thing.

Some Useful Conversions

- A gram is about the mass of a paper clip
- A nickel has a mass of about 5 grams
- A liter is half of a 2-liter soda bottle, or about a fourth of a gallon of milk
- A kilogram is a little more than twice as much as a pound (on Earth)
- A Newton is about 1/4 of a pound
- A meter is a little more than a yard
- A kilometer is about 1/6 of a mile
- Water freezes at 0º Celsius
- A comfortable day is around 24º Celsius
- A really hot day is around 35º Celsius
- Your body temperature is about 37º Celsius
Newton's Three Laws of Motion

1. Every object in motion keeps that same motion (i.e., same speed and direction) unless an external force acts on it.

2. Force equals mass times acceleration \(F = ma \)

3. For every action, there is an equal and opposite reaction.

Acceleration Due to Gravity

Newton's Gravitational Law says that the attraction force between two objects is the product of their masses times the gravitational constant \(G \), divided by the square of the distance between them:

\[
F_{12} = \frac{Gm_1 m_2}{d_{12}^2}
\]

where: \(G = 6.67 \times 10^{-11} \text{ Nm}^2\text{kg}^{-2} \text{sec}^{-2} \)

and \(d_{12} \) is the distance between body 1 and body 2

For an object, \(m \), at or near the surface of the Earth (i.e., \(d_{12} \) is the radius of the Earth) this simplifies to:

\[
F = mg \quad \text{where} \quad g = -9.8 \text{ meters/sec}^2 = -32.2 \text{ feet/sec}^2
\]

\(g \) is known as the **Acceleration Due to (Earth's) Gravity**

Constant-Acceleration Formulas

(These are worth memorizing!)

\[
V_f = V_i + at
\]

\[
d_i = d_v + V_f t + \frac{1}{2}at^2
\]

If you are moving vertically, then the acceleration, \(a \), will be the acceleration due to gravity, \(g \):

\[
d_i = d_v + V_{f,v} t + \frac{1}{2}gt^2
\]

If you are moving horizontally, there is no acceleration unless some outside horizontal force creates it.

\[
d_i = d_v + V_{f,h} t
\]

The following formula is handy because it relates all the usual quantities, but doesn't require you to know the elapsed time:

\[
v_{f,v}^2 = v_{i,v}^2 + 2a(d_v - d_f)
\]

Projectile Motion

\[
\mathbf{V} = V_x \mathbf{i} + V_y \mathbf{j}
\]

\[
\mathbf{W} = W_x \mathbf{i} + W_y \mathbf{j}
\]

\[
\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j}
\]

\[
\begin{align*}
X: & \quad a_x = 0 \\
Y: & \quad a_y = g \\
\end{align*}
\]

\[
\begin{align*}
V_x = V \cos \theta \\
V_y = V \sin \theta
\end{align*}
\]

\[
\begin{align*}
X: & \quad d_x = d_{x,0} + v_x t \\
Y: & \quad y = y_{0} + v_{y,0} t + \frac{1}{2}gt^2
\end{align*}
\]

A Projectile Launches – Where Does It End Up?

\[
\mathbf{V}_0 = V_x \mathbf{i} + V_y \mathbf{j}
\]

\[
\mathbf{W} = W_x \mathbf{i} + W_y \mathbf{j}
\]

\[
\mathbf{F} = F_x \mathbf{i} + F_y \mathbf{j}
\]

\[
\begin{align*}
X: & \quad a_x = 0 \\
Y: & \quad a_y = g \\
\end{align*}
\]

\[
\begin{align*}
V_x = V \cos \theta \\
V_y = V \sin \theta
\end{align*}
\]

\[
\begin{align*}
X: & \quad d_x = d_{x,0} + v_x t \\
Y: & \quad y = y_{0} + v_{y,0} t + \frac{1}{2}gt^2
\end{align*}
\]

Strategy: Treat each case separately. Figure out what limitation makes the projectile stop moving, calculate the time to get to that, and then see where the projectile would have ended up.
Case 1. What if it Never Reaches the Cliff?

Y Distance Equation:
\[0 = 0 + v_y t + \frac{1}{2} gt^2 \]

Solve for the time:
\[t = -\frac{v_y}{g} \pm \frac{\sqrt{v_y^2 + 2gh}}{g} \]

How Far will it Go?
Solve for the X Distance:
\[d_x = d_{\text{max}} + v_x t \]

Note: \(g < 0 \).

How High will it Go?
Solve for the Y Distance:
\[\text{impact} = 0 + v_y t - \frac{1}{2} gt^2 \]

Note: \(\text{impact} < 0 \).

Note: if \(\text{impact} = 0 \), this becomes Case #1.

Case 2. What if it Hits the Side of the Cliff?

X Distance Equation:
\[d_x = 0 + v_x t \]

Solve for the time:
\[t = \frac{d_x}{v_x} \]

How High will it Go?
Solve for the Y Distance:
\[h_{\text{cliff}} = 0 + v_y t - \frac{1}{2} gt^2 \]

Case 3. What if it Lands on Top of the Cliff?

Y Distance Equation:
\[h_{\text{max}} = 0 + v_y t - \frac{1}{2} gt^2 \]

Solve for the time:
\[t = \frac{v_y \pm \sqrt{v_y^2 + 2gh_{\text{max}}}}{g} \]

How Far will it Go?
Solve for the X Distance:
\[d_x = d_{\text{max}} + v_x t \]

Case 5, 2, 3 Projectile Motion:
When and Where will the Projectile Reach its Maximum Height?

Y Velocity Equation:
\[v_y = v_{0y} - gt \]

Solve for the time:
\[t = \frac{v_{0y}}{g} - \frac{v_y}{g} \]

How High will it Go?
Solve for the Y Distance:
\[h' = 0 + v_y t' - \frac{1}{2} g(t')^2 \]
The Physics of Bouncing Against a Floor or Wall

Balls Bounced on a Concrete Surface:
- Long golfball
- Tennis ball
- Rubber ball
- Tennis ball bearing
- Glass marble
- Ball of rubber bands
- Hard plastic ball
- Steel ball bearing
- Glass marble
- Hard plastic ball
- Steel ball bearing
- Glass marble
- Hard plastic ball
- Steel ball bearing

Where e is the Coefficient of Restitution (CoR), and is a measure of how much energy is retained during the bounce.

The amount of energy actually retained during the collision is:

\[E_{retained} = (1 - e^2) \]

Which means that:

\[E = E_{total} - E_{lost} \]

Find how much time it takes for the projectile to hit the ground. Find how far the projectile travels horizontally before hitting the ground. Find the maximum height the projectile reached before starting back down.

\[v = (10,10) \text{ meters/sec} \]

Simplify g to be -10 meters/sec^2

The Physics of Bouncing Against a Floor or Wall

Let’s Try it with Some Numbers

Find how much time it takes for the projectile to hit the ground.

\[d_2 = d_0 + v_y \Delta t \]

Solve for \(\Delta t \) when \(\text{dimpact} = \text{dy0} \). Why are there 2 answers? What are they? Which one do you want?

\[\text{Bounce(float } dt) \]

\[\text{void} \]

\[\text{float } x_{left} = \text{left time to hit the left wall} \]

\[x + v_x \Delta t = x_{left} + \text{radius} \]

\[t_{left} = \text{time to hit the right wall} \]

\[x + v_x \Delta t = x_{right} + \text{radius} - x \]

\[v_y = v_y + g t \]

\[v'_y = -e v_y \]

If no bounce:

\[v'_y = v_y \]

\[y' = y + v_y \Delta t + \frac{1}{2} g \Delta t^2 \]

\[y' = v_y + g t \]

The Physics of Bouncing Against a Floor or Wall

The Physics of Bouncing Against a Floor or Wall

3. Now deal with the \(x \) component. What equation relates distance traveled to initial velocity and (zero) acceleration?

\[d_x = d_0 + v_x \Delta t \]

4. Plug into the \(t \) you got in step #2. How far did the projectile travel?

\[d_x = 0 + 10t \]

5. Now deal with the maximum height. What is the \(y \) velocity when the projectile reaches the maximum height?

\[0 \]

6. What equation relates velocity achieved to initial velocity and distance travelled? (Hint: there is one that doesn’t need this.)

\[v_1^2 = v_0^2 + 2a(d_1 - d_0) \]

7. Solve it for \(a(d_1 - d_0) \). 0° = 0° - 2(10)(d_1 - d_0)
So far, we have only been dealing with objects undergoing linear motion. What about objects undergoing rotational motion?

1. Spinning motion
2. Motion around a curve

Spinning Motion: Constant-Acceleration Formulas

\[\omega_t = \omega_0 + \alpha t \]
\[\theta_t = \theta_0 + \omega_0 t + \frac{1}{2} \alpha t^2 \]
\[\alpha_t^2 = \omega_0^2 + 2\alpha(\theta_t - \theta_0) \]

Note: In the same way that the linear equations can work in x, y, and z, the rotational equations can work for rotations about the x, y, and z axes.

Motion around a curve: Centripetal / Centrifugal Force

1. Every object in motion keeps that same motion (i.e., same speed and direction) unless an external force acts on it.
2. Force equals mass times acceleration (\(F = ma \))
3. For every action, there is an equal and opposite reaction.

That force is called Centripetal Force, and acts on all objects as they round curves in order to make them round the curve and not go flying off.

Then What is Centrifugal Force?

The Centripetal Force is making the block change directions. This is what we observe from the outside.

But, if we were observing while riding on the block, the motion direction that our mass wants to keep is the original straight line. But, the block has been forced to change to a new direction. Until our mass also changes to this new direction, we are going to keep trying to go in the old direction, which seems to us to be towards the outside of the curve. We think we are being "thrown" there, but it is just a natural consequence of Newton's First Law.

How Much Force is the Centripetal Force and Where Does it Point?

\[F = ma = m\frac{v^2}{r} = mo^2r \]

This force points towards the instantaneous center of curvature.
Torque

Torque is like the rotational-motion equivalent of force. It is defined as a force, F, acting at a distance, d. (That distance is sometimes called a moment-arm.)

\[\text{Torque} = F \times d \]

An object is in static equilibrium if:
1. Sum of the forces = 0
2. Sum of the torques = 0

Torque-Balance lets us Analyze Common Mishaps

A truck rounding a bend too quickly

Center of Gravity

Centrifugal Force = $\frac{m v^2}{R}$

Gravity Force (Weight) = mg

The truck will tip if Tipping Torque > Gravity Torque:

$$m \frac{v^2}{R} h > mg \left(\frac{w}{2} \right)$$

What are the impacts of m, v, R, h, and w?

A truck rounding a bend too quickly

Big rig rollover bottles up northbound Terwilliger Curves