Vectors

A Vector Can Also Be Defined as the Positional Difference Between Two Points

\[(V_x, V_y, V_z) = (Q_x - P_x, Q_y - P_y, Q_z - P_z)\]

Unit Vectors have a Magnitude = 1.0

\[\hat{V} = \frac{\mathbf{V}}{\|\mathbf{V}\|} = \frac{V_x}{\sqrt{V_x^2 + V_y^2 + V_z^2}}\]

The circumflex (^) tells us this is a unit vector

Dot Product

\[\mathbf{A} \cdot \mathbf{B} = A_x B_x + A_y B_y + A_z B_z = \|\mathbf{A}\| \|\mathbf{B}\| \cos \theta\]

Because it produces a scalar result (i.e., a single number), this is also called the Scalar Product

A Physical Interpretation of the Dot Product

\[\mathbf{A} \cdot \hat{\mathbf{B}} = \|\mathbf{A}\| \cos \theta = \text{How much of } \mathbf{A} \text{ lives in the } \mathbf{B} \text{ direction}\]
A Physical Interpretation of the Dot Product

The amount of the force accelerating the car along the road is “how much of F is in the horizontal direction?”

\[F_{\text{road}} = F \cos \theta \]

This is easy to see in 2D, but a 3D version of the same problem is trickier.

The amount of the force accelerating the car along the road is “how much of F is in the R direction?”

\[F_{\text{road}} = F \cos \theta = F \hat{R} \]

Dot Products are Commutative

\[A \cdot B = B \cdot A \]

Dot Products are Distributive

\[A \cdot (B + C) = (A \cdot B) + (A \cdot C) \]

The Perpendicular to a 2D Vector

\[V = (x, y) \]
then \[V_\perp = (-y, x) \]

You can tell that this is true because

\[V \cdot V_\perp = (x, y) \cdot (-y, x) = -xy + xy = 0 = \cos 90^\circ \]

Cross Product

\[A = (A_x, A_y, A_z) \]
\[B = (B_x, B_y, B_z) \]

\[A \times B = (A_y B_z - A_z B_y, A_z B_x - A_x B_z, A_x B_y - A_y B_x) \]

\[|A \times B| = |A||B|\sin \theta \]

Because it produces a vector result (i.e., three numbers), this is also called the Vector Product.
A Physical Interpretation of the Cross Product

\[\| \mathbf{A} \times \mathbf{B} \| = \| \mathbf{A} \| \sin \theta \]

This is important — memorize this phrase!

= How much of \(\mathbf{A} \) lives perpendicular to the \(\mathbf{B} \) direction

The Perpendicular Property of the Cross Product

\[\mathbf{A} \times \mathbf{B} \]

The vector is both perpendicular to \(\mathbf{A} \) and perpendicular to \(\mathbf{B} \)

The Right-Hand-Rule Property of the Cross Product

Curl the fingers of your right hand in the direction that starts at \(\mathbf{A} \) and heads towards \(\mathbf{B} \). Your thumb points in the direction of \(\mathbf{A} \times \mathbf{B} \).

Cross Products are Not Commutative

\[\mathbf{A} \times \mathbf{B} = -\mathbf{B} \times \mathbf{A} \]

Cross Products are Distributive

\[\mathbf{A} \times (\mathbf{B} + \mathbf{C}) = (\mathbf{A} \times \mathbf{B}) + (\mathbf{A} \times \mathbf{C}) \]

A Use for the Cross Product:

Finding a Vector Perpendicular to a Plane (= the Surface Normal)

\[\mathbf{n} = (\mathbf{R} - \mathbf{Q}) \times (\mathbf{S} - \mathbf{Q}) \]

A Use for the Cross Product:

Finding a Vector Perpendicular to a Plane (= the Surface Normal) – This is used in CG Lighting

\[\mathbf{n} \cdot \mathbf{n}_1, (\mathbf{n} \cdot \mathbf{n}_2), \text{ and } (\mathbf{n} \cdot \mathbf{n}_3) \]

are all positive, then \(\mathbf{P} \) is inside the triangle \(\mathbf{QRS} \)
Is a Point Inside a Triangle?
This can be simplified if you are in 2D (X-Y).

If all are positive, then P is inside the triangle QRS.

A Use for the Cross Product:
Finding the Area of a 3D Triangle

Using the plane equation, it is:
which expands out to become the more familiar Ax + By + Cz + D = 0.

The distance from a point to a plane is:

The cross product is answering the question “How much of (P-Q) is in the \(\vec{n} \) direction?”

Note that this gives a signed distance. If \(d > 0 \), then P is on the same side of the plane \(\vec{n} \) as the normal points. This is very useful.

Derivation of the Law of Sines

Dividing by \(qrs \) gives:

Derivation of the Law of Cosines

The substitution of the parametric expression for P into the plane equation, then the only thing we don’t know in that equation is \(t \). Solve it for \(t^* \). Knowing \(t^* \) will let us compute the \(x,y,z \) of the actual intersection using the line equation. If \(t^* \) has a zero in the denominator, then that tells us that \(t=\infty \) and the line must be parallel to the plane.

This gives us the point of intersection with the infinite plane. We could now use the method covered a few slides ago to see if P lies inside a particular triangle.
The equation of the lines are: \(P = P_0 + t \cdot v_p \) \(Q = Q_0 + t \cdot v_q \).

The minimal distance vector between the two lines must be perpendicular to both.

A vector between them that is perpendicular to both is: \(v = v_p \times v_q \).

We need to answer the question “How much of \((Q_0 - P_0)\) is in the \(v \) direction?”.

To do this, we once again use the dot product:

\[d = (P_0 - Q_0) \cdot v \]

Another use for Dot Products:

Force One Vector to be Perpendicular to Another Vector

Here, we want to force \(A \) to become perpendicular to \(B \).

The strategy is to get rid of the parallel component, leaving just the perpendicular:

\[A = A + A_\perp \]

\[A_\perp = A - A_i \]

So that \(A' = A_\perp = A - (A \bullet \hat{B})\hat{B} \)

This is known as **Gram-Schmidt orthogonalization**.