
10/21/2015

1

Game Engines: Why and What?
Dan White
Technical Director
Pipeworks
danw@pipeworks.com

Message

 As you learn techniques, consider how
they can be integrated into a production
pipeline.

Sense of scale…

 Video games word-wide: $110 billion
business in 2015
◦ Main driver of 3D graphics hardware
 Not simulations or NORAD

◦ Main driver of 3D rendering software
 Not Hollywood

Budgets and Timeline
 Individual Game budgets are big.
◦ Current AAA titles:
 $30 million budget, 2+ year dev cycle.
 GTAV = 1 $Billion, $265 million to develop.

◦ Even mobile games: $500 thousand
◦ Project completion date is very important.
 Particularly for licensed properties, sports, holiday

launches, or anything with advertising.

◦ Schedules from 3 month to 5+ years

Managerial Ideal

Game development
organization

Money Product

More Money

Olde Tyme Game Making

Turbo Assembler
6 months

Programmer Game

35 years ago, a game might have1
programmer, and maybe 1 artist

They were written…like a novel is
written.

10/21/2015

2

A current mid/large size project
looks very different…

Head Count

Artists

Animators

Designers

Scripters

Programmers

Producers

On large projects, programmers are a small part
On smaller projects, a larger part
This doesn’t even include QA

A different approach

Jumpman
Atari 800
circa 1983:

This game had an EDITOR!
At the time, this seemed revolutionary to me.

Doom Engine cemented the idea

◦ Spawned
HeXen,
Heretic and
so on.
◦ Started the

idea that an
engine is
potentially
valuable on
its own.

Doom released in 1993

Game Engine Concept
 A collection of reusable tools and runtime

for making games.
 An integration platform for all the different

features of the game.
 Used by the different disciplines to do their

work.
 Ideal is you don't need engineers to make a

game.
 After all, you don't need engineers to write a book or

design a building
 Still plenty of work for engineers!!

C

How the team works…

Engine

Animators

Designers

Artists

Scripters
Product

Audio
Designers

Gameplay
Programmers

Game specific
code

Production should be a pipeline

Import Assets

Edit Game
Data

Bundle for
Runtime

Load

Simulate

Present

Collect Data

Analyze

Distribute

Tool chain Runtime Back End

10/21/2015

3

Who are the engine users?
 Artists
◦ People with art talent and a wide range of technical skills.
◦ They want to make assets in a DCC tool (e.g. Maya) and

put them in the game.
◦ Need to be able to see the final result.

 Designers
◦ Also a wide range of technical skills.
◦ They want to arrange content to produce fun.
 Place objects, manipulate values, script actions.

 Game programmers
◦ Engineers writing code specific to the game you are

making.
◦ Organizationally separate from the people making the

engine.

Everybody wants…
 Easy of use:
◦ Intuitive UI
◦ Stability

 Fast iteration times:
◦ Make a change
◦ See the result
◦ Make another change

 Iteration is the KEY to making games
good!
◦ Good: Play in editor…10 second loop
◦ Bad: Bundle and launch full game…8 minute loop

Key Engine Features
 Rendering
 Serialization
◦ Asset loading

 Object simulation
 Camera & Controls
 UI system
◦ Need for shell and HUD
 Do not underestimate!

Other Features
 Asset Management
◦ Versioning

 Build system
 Sound
 Animation
 Physics
◦ Cloth

 (Simple) Networking
 And on and on...
◦ Feature set grows over time
◦ No feature is minor when your game requires it!

Unreal Unity

10/21/2015

4

Spigot
It’s a hard problem

 Engines take many years to develop.
◦ Many fail.

 Not because of the difficulty of basic
research.
◦ Most features begin in academia, or with

graphics card manufactures.

 Hard part is integration into a usable
system.

Key Integration Points For a Feature

 Tool Chain
◦ How do you get external assets into the game?
◦ Example Meshes:
 Built in Maya
 Exported as FBX
 Imported into editor for display

 In-editor UI
◦ How will artists and designers configure your

feature?
 Visual editing is better.
 This is usually the most time consuming part.
◦ How do people preview and iterate?

More Integration Points

 Storage & Loading
◦ How are your configuration parameters

stored by the editor?
 Ideally, this will be text so you can diff results.

◦ How will the data be preprocessed at build
time?
 Runtime data is highly optimized, and this can take a

long time.

◦ How will data be quickly loaded at runtime?
 May need to stream it.

More Integration Points
 Runtime
◦ What code runs in the actual game?
◦ Games are real-time systems, hence predictable

performance is key.
 Do not amortize costs in algorithms.
◦ What resources to you need:
 Memory
 Texture Memory
 CPU
 GPU
◦ Can you make the code parallel?

 Interactions with other features.

Interactions

 How does a feature interact with other
features?
◦ Sometimes features work against each other.
◦ You can’t just change the rendering pipeline

cause you want to.

 Usually this is the hardest (if not the
most time consuming) part.

10/21/2015

5

Example Feature: Particle Systems Basic Idea

 Render a sprite many many times to
produce smoke, explosions, etc.

 Can produce a wide variety of effects
with small amounts of source art.
◦ Great for engineers who want to make cool

stuff.

 Generally not physically based.
◦ Not widely studied in academia.

Tool Chain

 Particle system:
◦ Input is textures.
 Made in Photoshop
 Imported as PSD, JPEG, etc.

 Particle systems:
◦ Invent the concept of “emitters” which

produce particles.
◦ Using existing UI for materials.
 In Unreal, this is a graph-based system.

◦ Use a property sheet for parameters.
◦ Use a visual editor for curves.
 Supports splines.

Editor UI

Unreal Material Editor Unreal Cascade Particle Editor

10/21/2015

6

Storage, Preprocessing, Loading

 Particle system:
◦ Editor description could be text.
◦ Runtime data is small.
 Store as binary POD.
 Reference materials, which pull in textures.
 Converted to DXT or similar.

Runtime

 Particles:
◦ Straightforward to write.
◦ Render large numbers of dynamically updated

quads or primitives.
 It’s a bad idea to call DX/OpenGL many times.
 Need to coalesce in vertex buffers or display lists.

◦ Extremely fill intensive.
◦ Updating many particles is CPU intensive.
 Particle systems very suitable for parallel

processing.

Interactions
 Particles are typically translucent.
◦ Rendered with alpha.
◦ Should they write to the Z-buffer? Probably not.
 You will likely have to sort them relative to other objects.

 Depth complexity of particle systems is very high.
◦ Will destroy your fill rate if they are close to the camera.
 Have to LOD particles as you get close, or limit camera.

◦ May implement lower-res render to texture.
 If you have depth based fog, do you apply fog to the particles?
 Deferred rendering
◦ A screen space rendering technique that uses passes.
◦ Doesn’t handle alpha. What to do?
 Dithering
 Separate forward rendering pass.

Some observations…

 The editor and tool chain are much more
complex than the runtime.
◦ Lots of UI work!

 The whole team works with the tool
chain, but only engineers work with the
runtime.
◦ Productivity payoffs for improved tools can be

very large.

Downside of Engines

 Cost.
 Produces external dependencies.
 Poor support for particular genres.
◦ e.g. RTS

 Generic performance may not be as good
as special code.

These are issues as old as software.

Hardware Evolution:
Where are we going?

NES PS1 PS2 PS3 Current
PC

Xbox One

CPU MOS
Tech
6502
1.79MHz

MIPS
R3000A-
32-bit
RISC chip
at 33 MHz

294 MHz
MIPS
"Emotion
Engine"

3.2 GHz
POWER
PPE,
seven
3.2 GHz
SPEs

8 Cores at
3 GHz

8 Core
AMD
custom
CPU
Frequency:
1.75 GHz

GPU - 66 MIPS
vector
math unit
on CPU

147 MHz
"Graphics
Synthesizer"

550 MH
z based
on
Nvidia
G70

Gerforce
650
1058 Mhz
384 Cores

853 MHz
GPU
Custom
AMD

Storage Cartridge CD DVD Blu-Ray HDD HDD

10/21/2015

7

Content is King
 We have already reached the sweet spot

for most game features:
◦ 4 enemies to 8  big difference
◦ 64 enemies to 128  small difference

 PS2 was the tipping point between ability
to display content and ability to make it.

 We are now firmly in the era where
content creation cost is the driving factor.

 Runtime performance gets even less
important.

Beyond the Engine: The Back End
 Disruptive force since late 2000’s:
◦ Piracy, and the need to control it
◦ Digital Distribution
◦ Success of MMORPGS (e.g. WOW)
◦ High broadband penetration
◦ Microtransactions as business model
◦ Resurgence of the PC, and emergence of mobile
◦ Abundant web technology & infrastructure

 Result has been the rise of games with a
“back end” component
◦ Means: the game connects to a database

Implementation

 Backend is typically not part of the game
engine.

 Uses technologies not traditionally part of
game development.

 Primary reason: “mainstream” software
development tools can be used.
◦ Node.js
◦ .NET
◦ CodeIgniter

Back End Implications
 Once you connect to a database, many things become easy:
◦ Cloud based save load
◦ Multiplayer lobbies & leaderboards
 But not synchronous MP

◦ Social integration
◦ Freemium economy & transactions
◦ Piracy protection
◦ Telemetry, which has changed game design forever

 Typically implemented via a HTTP/HTTPS & REST
◦ Most common back ends are PHP, but all kinds used
◦ Most common database is MySQL, but nosql is gaining
 Games are much more write heavy than other Web apps

◦ Scalability is a problem
 3rd party hosting services (AWS, Rackspace) used a lot
 One of the biggest areas of active “research.”

What it takes…
 Games are a serious career for people who

are serious about it.
 Game programming involves skills missing

from a traditional CS program:
◦ Mathematical modeling, vector math
◦ Simulation & physics
◦ Graphics, particularly special effects
 This is why I’m so excited about this class!

 Programming tasks often end up with a
complex integration step.
◦ Strong programming skills are essential.

10/21/2015

8

Message Recap

 As you learn techniques, consider how
they can be integrated into a production
pipeline.

 Iteration! Iteration! Iteration!

