
10/21/2015

1

Game Engines: Why and What?
Dan White
Technical Director
Pipeworks
danw@pipeworks.com

Message

 As you learn techniques, consider how
they can be integrated into a production
pipeline.

Sense of scale…

 Video games word-wide: $110 billion
business in 2015
◦ Main driver of 3D graphics hardware
 Not simulations or NORAD

◦ Main driver of 3D rendering software
 Not Hollywood

Budgets and Timeline
 Individual Game budgets are big.
◦ Current AAA titles:
 $30 million budget, 2+ year dev cycle.
 GTAV = 1 $Billion, $265 million to develop.

◦ Even mobile games: $500 thousand
◦ Project completion date is very important.
 Particularly for licensed properties, sports, holiday

launches, or anything with advertising.

◦ Schedules from 3 month to 5+ years

Managerial Ideal

Game development
organization

Money Product

More Money

Olde Tyme Game Making

Turbo Assembler
6 months

Programmer Game

35 years ago, a game might have1
programmer, and maybe 1 artist

They were written…like a novel is
written.

10/21/2015

2

A current mid/large size project
looks very different…

Head Count

Artists

Animators

Designers

Scripters

Programmers

Producers

On large projects, programmers are a small part
On smaller projects, a larger part
This doesn’t even include QA

A different approach

Jumpman
Atari 800
circa 1983:

This game had an EDITOR!
At the time, this seemed revolutionary to me.

Doom Engine cemented the idea

◦ Spawned
HeXen,
Heretic and
so on.
◦ Started the

idea that an
engine is
potentially
valuable on
its own.

Doom released in 1993

Game Engine Concept
 A collection of reusable tools and runtime

for making games.
 An integration platform for all the different

features of the game.
 Used by the different disciplines to do their

work.
 Ideal is you don't need engineers to make a

game.
 After all, you don't need engineers to write a book or

design a building
 Still plenty of work for engineers!!

C

How the team works…

Engine

Animators

Designers

Artists

Scripters
Product

Audio
Designers

Gameplay
Programmers

Game specific
code

Production should be a pipeline

Import Assets

Edit Game
Data

Bundle for
Runtime

Load

Simulate

Present

Collect Data

Analyze

Distribute

Tool chain Runtime Back End

10/21/2015

3

Who are the engine users?
 Artists
◦ People with art talent and a wide range of technical skills.
◦ They want to make assets in a DCC tool (e.g. Maya) and

put them in the game.
◦ Need to be able to see the final result.

 Designers
◦ Also a wide range of technical skills.
◦ They want to arrange content to produce fun.
 Place objects, manipulate values, script actions.

 Game programmers
◦ Engineers writing code specific to the game you are

making.
◦ Organizationally separate from the people making the

engine.

Everybody wants…
 Easy of use:
◦ Intuitive UI
◦ Stability

 Fast iteration times:
◦ Make a change
◦ See the result
◦ Make another change

 Iteration is the KEY to making games
good!
◦ Good: Play in editor…10 second loop
◦ Bad: Bundle and launch full game…8 minute loop

Key Engine Features
 Rendering
 Serialization
◦ Asset loading

 Object simulation
 Camera & Controls
 UI system
◦ Need for shell and HUD
 Do not underestimate!

Other Features
 Asset Management
◦ Versioning

 Build system
 Sound
 Animation
 Physics
◦ Cloth

 (Simple) Networking
 And on and on...
◦ Feature set grows over time
◦ No feature is minor when your game requires it!

Unreal Unity

10/21/2015

4

Spigot
It’s a hard problem

 Engines take many years to develop.
◦ Many fail.

 Not because of the difficulty of basic
research.
◦ Most features begin in academia, or with

graphics card manufactures.

 Hard part is integration into a usable
system.

Key Integration Points For a Feature

 Tool Chain
◦ How do you get external assets into the game?
◦ Example Meshes:
 Built in Maya
 Exported as FBX
 Imported into editor for display

 In-editor UI
◦ How will artists and designers configure your

feature?
 Visual editing is better.
 This is usually the most time consuming part.
◦ How do people preview and iterate?

More Integration Points

 Storage & Loading
◦ How are your configuration parameters

stored by the editor?
 Ideally, this will be text so you can diff results.

◦ How will the data be preprocessed at build
time?
 Runtime data is highly optimized, and this can take a

long time.

◦ How will data be quickly loaded at runtime?
 May need to stream it.

More Integration Points
 Runtime
◦ What code runs in the actual game?
◦ Games are real-time systems, hence predictable

performance is key.
 Do not amortize costs in algorithms.
◦ What resources to you need:
 Memory
 Texture Memory
 CPU
 GPU
◦ Can you make the code parallel?

 Interactions with other features.

Interactions

 How does a feature interact with other
features?
◦ Sometimes features work against each other.
◦ You can’t just change the rendering pipeline

cause you want to.

 Usually this is the hardest (if not the
most time consuming) part.

10/21/2015

5

Example Feature: Particle Systems Basic Idea

 Render a sprite many many times to
produce smoke, explosions, etc.

 Can produce a wide variety of effects
with small amounts of source art.
◦ Great for engineers who want to make cool

stuff.

 Generally not physically based.
◦ Not widely studied in academia.

Tool Chain

 Particle system:
◦ Input is textures.
 Made in Photoshop
 Imported as PSD, JPEG, etc.

 Particle systems:
◦ Invent the concept of “emitters” which

produce particles.
◦ Using existing UI for materials.
 In Unreal, this is a graph-based system.

◦ Use a property sheet for parameters.
◦ Use a visual editor for curves.
 Supports splines.

Editor UI

Unreal Material Editor Unreal Cascade Particle Editor

10/21/2015

6

Storage, Preprocessing, Loading

 Particle system:
◦ Editor description could be text.
◦ Runtime data is small.
 Store as binary POD.
 Reference materials, which pull in textures.
 Converted to DXT or similar.

Runtime

 Particles:
◦ Straightforward to write.
◦ Render large numbers of dynamically updated

quads or primitives.
 It’s a bad idea to call DX/OpenGL many times.
 Need to coalesce in vertex buffers or display lists.

◦ Extremely fill intensive.
◦ Updating many particles is CPU intensive.
 Particle systems very suitable for parallel

processing.

Interactions
 Particles are typically translucent.
◦ Rendered with alpha.
◦ Should they write to the Z-buffer? Probably not.
 You will likely have to sort them relative to other objects.

 Depth complexity of particle systems is very high.
◦ Will destroy your fill rate if they are close to the camera.
 Have to LOD particles as you get close, or limit camera.

◦ May implement lower-res render to texture.
 If you have depth based fog, do you apply fog to the particles?
 Deferred rendering
◦ A screen space rendering technique that uses passes.
◦ Doesn’t handle alpha. What to do?
 Dithering
 Separate forward rendering pass.

Some observations…

 The editor and tool chain are much more
complex than the runtime.
◦ Lots of UI work!

 The whole team works with the tool
chain, but only engineers work with the
runtime.
◦ Productivity payoffs for improved tools can be

very large.

Downside of Engines

 Cost.
 Produces external dependencies.
 Poor support for particular genres.
◦ e.g. RTS

 Generic performance may not be as good
as special code.

These are issues as old as software.

Hardware Evolution:
Where are we going?

NES PS1 PS2 PS3 Current
PC

Xbox One

CPU MOS
Tech
6502
1.79MHz

MIPS
R3000A-
32-bit
RISC chip
at 33 MHz

294 MHz
MIPS
"Emotion
Engine"

3.2 GHz
POWER
PPE,
seven
3.2 GHz
SPEs

8 Cores at
3 GHz

8 Core
AMD
custom
CPU
Frequency:
1.75 GHz

GPU - 66 MIPS
vector
math unit
on CPU

147 MHz
"Graphics
Synthesizer"

550 MH
z based
on
Nvidia
G70

Gerforce
650
1058 Mhz
384 Cores

853 MHz
GPU
Custom
AMD

Storage Cartridge CD DVD Blu-Ray HDD HDD

10/21/2015

7

Content is King
 We have already reached the sweet spot

for most game features:
◦ 4 enemies to 8 big difference
◦ 64 enemies to 128 small difference

 PS2 was the tipping point between ability
to display content and ability to make it.

 We are now firmly in the era where
content creation cost is the driving factor.

 Runtime performance gets even less
important.

Beyond the Engine: The Back End
 Disruptive force since late 2000’s:
◦ Piracy, and the need to control it
◦ Digital Distribution
◦ Success of MMORPGS (e.g. WOW)
◦ High broadband penetration
◦ Microtransactions as business model
◦ Resurgence of the PC, and emergence of mobile
◦ Abundant web technology & infrastructure

 Result has been the rise of games with a
“back end” component
◦ Means: the game connects to a database

Implementation

 Backend is typically not part of the game
engine.

 Uses technologies not traditionally part of
game development.

 Primary reason: “mainstream” software
development tools can be used.
◦ Node.js
◦ .NET
◦ CodeIgniter

Back End Implications
 Once you connect to a database, many things become easy:
◦ Cloud based save load
◦ Multiplayer lobbies & leaderboards
 But not synchronous MP

◦ Social integration
◦ Freemium economy & transactions
◦ Piracy protection
◦ Telemetry, which has changed game design forever

 Typically implemented via a HTTP/HTTPS & REST
◦ Most common back ends are PHP, but all kinds used
◦ Most common database is MySQL, but nosql is gaining
 Games are much more write heavy than other Web apps

◦ Scalability is a problem
 3rd party hosting services (AWS, Rackspace) used a lot
 One of the biggest areas of active “research.”

What it takes…
 Games are a serious career for people who

are serious about it.
 Game programming involves skills missing

from a traditional CS program:
◦ Mathematical modeling, vector math
◦ Simulation & physics
◦ Graphics, particularly special effects
 This is why I’m so excited about this class!

 Programming tasks often end up with a
complex integration step.
◦ Strong programming skills are essential.

10/21/2015

8

Message Recap

 As you learn techniques, consider how
they can be integrated into a production
pipeline.

 Iteration! Iteration! Iteration!

