Parallel Programming: Moore’s Law and Multicore

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Increasing Transistor Density – Moore’s Law

"Transistor density doubles every 1.5 years." Note: Log scale!

If I fit this line to the plot, I get a doubling every 1.6 years.

Oftentimes people have (incorrectly) equivalenced this to: “Clock speed doubles every 1.5 years.”

Increasing Clock Speed?

Von Neumann Architecture:
Basically the fundamental pieces of a CPU have not changed since the 1960s

Other elements:
- Clock
- Registers
- Program counter
- Stack pointer

Note: Log scale!

This is what Moore’s Law really deals with!

This is not what Moore’s Law really deals with!

Power being consumed

Transistor count

Intel/CPU Trends
(source: Intel, Wikipedia, K. Eldridge)

Transistor (Moore’s Law)

Power (Moore’s Law)

Clock speed

Dual-Core Intel

Pentium

Power

Source: Intel
Moore’s Law

- Fabrication process size (“gate pitch”) has fallen from 65 nm, to 45 nm, to 32 nm, to 22 nm, to 16 nm, to 11 nm, to 8 nm. This translates to more transistors on the same size die.

- From 1986 to 2002, processor performance increased an average of 52%/year, but then virtually plateaued.

Clock Speed and Power Consumption

<table>
<thead>
<tr>
<th>Year</th>
<th>Processor</th>
<th>MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>1981</td>
<td>IBM PC</td>
<td>5 Mhz</td>
</tr>
<tr>
<td>1995</td>
<td>Pentium</td>
<td>100 Mhz</td>
</tr>
<tr>
<td>2002</td>
<td>Pentium 4</td>
<td>3000 Mhz (3 GHz)</td>
</tr>
<tr>
<td>2007</td>
<td>Pentium 4</td>
<td>3800 Mhz (3.8 GHz)</td>
</tr>
<tr>
<td>2009</td>
<td>Pentium 4</td>
<td>4000 Mhz (4.0 GHz)</td>
</tr>
</tbody>
</table>

Clock speed has hit a plateau, largely because of power consumption and power dissipation.

\[\text{Power Consumption} \propto \text{Clock Speed}^2 \]

Yikes!

Once consumed, that power becomes heat, which must be dissipated somehow. In general, compute systems can remove around 150 W/cm² without resorting to exotic cooling methods.

And, speaking of “exotic”, AMD set the world record for clock speed (8.429 GHz) using a Liquid Nitrogen-cooled CPU

What Kind of Power Density Dissipation Would it Have Taken to Keep up with Clock Speed Trends?

Source: Intel
So, to summarize:

Moore’s Law of transistor density is still going, but the “Moore’s Law” of clock speed has hit a wall. Now what do we do?

We keep packing more and more transistors on a single chip, but don’t increase the clock speed. Instead, we increase computational throughput by using those transistors to pack multiple processors onto the same chip. This is referred to as **multicore**.

Vendors have also reacted by adding SIMD floating-point units on the chip as well. We will get to that later.

Multicore and Multithreading

Multicore, even without multithreading too, is still a good thing. It can be used, for example, to allow multiple programs on a desktop system to always be executing concurrently.

Multithreading, even without multicore too, is still a good thing. Threads can make it easier to logically have many things going on in your program at a time, and can absorb the dead-time of other threads.

But, the big gain in performance is to use both to speed up a single program. For this, we need a combination of both multicore and multithreading.

Multicore is a very hot topic these days. It would be hard to buy a CPU that doesn’t have more than one core. We, as programmers, get to take advantage of that.

We need to be prepared to convert our programs to run on **MultiThreaded Shared Memory Multicore** architectures.

Each of the Multiple Cores keeps its own State

- 1 core, 1 state
- 2 cores, 2 states
- 4 cores, 4 states

- State
- Core
- Cache

- Registers
- Program Counter
- Stack Pointer

So, if that’s what Multicore is about, what is Hyperthreading?

- 1 core, 1 state
- 1 core, 2 states, with Hyperthreading
- 2 cores, 2 states
- 2 cores, 4 states, with Hyperthreading
- 4 cores, 4 states
Four Cores with Two Hyperthreads per Core

Note that this is upside-down from our usual convention. Sorry. I got this from someone else.