Parallel Programming: Speedups and Amdahl’s law

If you are using \(n \) processors, your Speedup is:

\[
\text{Speedup}_n = \frac{T_1}{T_n}
\]

where \(T_1 \) is the execution time on one core and \(T_n \) is the execution time on \(n \) cores. Note that Speedup, should be \(> 1 \).

And your Speedup Efficiency is:

\[
\text{Efficiency}_n = \frac{\text{Speedup}_n}{n}
\]

which could be as high as 1., but probably never will be.

However, Multicore is not a Free Lunch: Amdahl’s Law

If you put in \(n \) processors, you should get \(n \) times Speedup (and 100% Speedup Efficiency), right? Wrong!

There are always some fraction of the total operation that is inherently sequential and cannot be parallelized no matter what you do. This includes reading data, setting up calculations, control logic, storing results, etc.

If you think of all the operations that a program needs to do as being divided between a fraction that is parallelizable and a fraction that isn’t (i.e., is stuck at being sequential), then Amdahl’s Law says:

\[
\text{Speedup}_n = \frac{T_1}{T_n} = \frac{1}{\frac{F_{\text{parallel}}}{R} + \frac{F_{\text{sequential}}}{R}} = \frac{1}{\frac{F_{\text{parallel}}}{R} + (1 - F_{\text{parallel}})}
\]

This fraction can be reduced by deploying multiple processors. This fraction can’t.

A Visual Explanation of Amdahl’s Law

The Sequential Portion doesn’t go away, and it also doesn’t get any smaller. It just gets more and more dominant.
SpeedUp as a Function of Number of Processors and $F_{parallel}$

- $F_{parallel}$: 90%
- $F_{parallel}$: 80%
- $F_{parallel}$: 60%
- $F_{parallel}$: 40%
- $F_{parallel}$: 20%

SpeedUp as a Function of $F_{parallel}$ and Number of Processors

- $N=1$
- $N=2$
- $N=3$
- $N=10$

SpeedUp Efficiency ($\frac{S}{N}$) as a Function of Number of Processors and $F_{parallel}$

- $F_{parallel}$: 90%
- $F_{parallel}$: 80%
- $F_{parallel}$: 60%
- $F_{parallel}$: 40%
- $F_{parallel}$: 20%

SpeedUp Efficiency ($\frac{S}{N}$) as a Function of $F_{parallel}$ and Number of Processors

- $N=1$
- $N=2$
- $N=3$
- $N=10$
You can also solve for F_{parallel} using Amdahl's Law if you know your speedup and the number of processors.

Amdahl's Law says:

$$S = \frac{T}{T_n} = \frac{1}{n + (1-F)}$$

$$\Rightarrow \quad \frac{F - nF}{n} = \frac{1}{S} - 1 = \frac{F(1-n)}{n}$$

Solving for F:

$$F = \frac{1}{1 - \frac{1}{n}}$$

If you've got several (n, S) values, you can take the average (which is actually a least squares fit):

$$F_i = \frac{n_i - T_{n_i}}{T_{n_i}}, \quad i = 2...N$$

$$F = \frac{\sum F_i}{N - 1} \quad \text{note that when } i=1, \quad T_n = T_i$$

A More Optimistic Take on Amdahl's Law:

The Gustafson-Baris Observation

Gustafson observed that as you increase the number of processors, you have a tendency to attack larger and larger versions of the problem. He also observed that when you use the same parallel program on larger datasets, the parallel fraction, F_p, increases.

Let P be the amount of time spent on the parallel portion of an original task and S spent on the serial portion. Then

$$F_p = \frac{P}{P + S}$$

or

$$S = \frac{P - PF_p}{F_p}$$

Without loss of generality, we can set $P=1$ so that, really, S is now a fraction of P. We now have:

$$S = \frac{1 - F_p}{F_p}$$

Amdahl's Law can also give us the Maximum Possible SpeedUp

The maximum SpeedUp is:

$$\max Speedup = \lim_{n \to \infty} Speedup = \frac{1}{F_{\text{sequential}}} = \frac{1}{1 - F_{\text{parallel}}}$$

The following table shows the maximum speedup for various percentage increases in the parallel fraction:

<table>
<thead>
<tr>
<th>$F_{parallel}$ max</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td>0.20</td>
<td>1.25</td>
</tr>
<tr>
<td>0.40</td>
<td>1.43</td>
</tr>
<tr>
<td>0.60</td>
<td>1.67</td>
</tr>
<tr>
<td>0.80</td>
<td>2.00</td>
</tr>
<tr>
<td>0.90</td>
<td>3.33</td>
</tr>
<tr>
<td>0.95</td>
<td>5.00</td>
</tr>
<tr>
<td>0.99</td>
<td>10.00</td>
</tr>
<tr>
<td>1.00</td>
<td>20.00</td>
</tr>
<tr>
<td>1.00</td>
<td>100.00</td>
</tr>
</tbody>
</table>

A More Optimistic Take on Amdahl's Law:

The Gustafson-Baris Observation

We know that if we multiply the amount of data to process by N, then the amount of parallel work becomes NP. Surely the serial work must increase too, but we don't know how much. Let's say it doesn't increase at all, so that we know we are getting an upper bound answer.

In that case, the new parallel fraction is:

$$F' = \frac{PP'}{P + S} = \frac{NP}{NP + S}$$

And substituting for $P=1$ and for S, we have:

$$F' = \frac{N}{N + S} = \frac{N}{N + \frac{1 - F_p}{F_p}}$$
A More Optimistic Take on Amdahl's Law: The Gustafson-Baris Observation

If we tabulate this, we get a table of \(F_p' \) values:

<table>
<thead>
<tr>
<th>(F_p')</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>0.12</td>
<td>0.24</td>
<td>0.36</td>
<td>0.48</td>
<td>0.60</td>
<td>0.72</td>
<td>0.84</td>
<td>0.96</td>
<td>1.08</td>
<td>1.20</td>
</tr>
<tr>
<td>0.2</td>
<td>0.20</td>
<td>0.40</td>
<td>0.60</td>
<td>0.80</td>
<td>1.00</td>
<td>1.20</td>
<td>1.40</td>
<td>1.60</td>
<td>1.80</td>
<td>2.00</td>
</tr>
<tr>
<td>0.3</td>
<td>0.29</td>
<td>0.58</td>
<td>0.87</td>
<td>1.16</td>
<td>1.45</td>
<td>1.74</td>
<td>2.03</td>
<td>2.32</td>
<td>2.61</td>
<td>2.90</td>
</tr>
<tr>
<td>0.4</td>
<td>0.38</td>
<td>0.76</td>
<td>1.14</td>
<td>1.52</td>
<td>1.90</td>
<td>2.28</td>
<td>2.66</td>
<td>3.04</td>
<td>3.42</td>
<td>3.80</td>
</tr>
<tr>
<td>0.5</td>
<td>0.48</td>
<td>0.96</td>
<td>1.44</td>
<td>1.92</td>
<td>2.40</td>
<td>2.88</td>
<td>3.36</td>
<td>3.84</td>
<td>4.32</td>
<td>4.80</td>
</tr>
<tr>
<td>0.6</td>
<td>0.59</td>
<td>1.18</td>
<td>1.76</td>
<td>2.34</td>
<td>2.92</td>
<td>3.50</td>
<td>4.08</td>
<td>4.66</td>
<td>5.24</td>
<td>5.82</td>
</tr>
<tr>
<td>0.7</td>
<td>0.70</td>
<td>1.40</td>
<td>2.10</td>
<td>2.80</td>
<td>3.50</td>
<td>4.20</td>
<td>4.90</td>
<td>5.60</td>
<td>6.30</td>
<td>7.00</td>
</tr>
<tr>
<td>0.8</td>
<td>0.81</td>
<td>1.62</td>
<td>2.43</td>
<td>3.24</td>
<td>4.05</td>
<td>4.86</td>
<td>5.67</td>
<td>6.48</td>
<td>7.29</td>
<td>8.10</td>
</tr>
<tr>
<td>0.9</td>
<td>0.93</td>
<td>1.85</td>
<td>2.68</td>
<td>3.51</td>
<td>4.34</td>
<td>5.17</td>
<td>6.00</td>
<td>6.83</td>
<td>7.66</td>
<td>8.49</td>
</tr>
</tbody>
</table>

Or, graphing it:

We can also turn \(F_p' \) into a Maximum Speedup:

A More Optimistic Take on Amdahl's Law: The Gustafson-Baris Observation