
Engineering at a Games
Company: What do we do?

Dan White
CTO

Pipeworks
October 2022

My Goal Today

• Give you some perspective about what engineers at a commercial
games company do
• Hopefully gives you some motivation for this class

• Hobby and indie developers are different
• But very relevant!

• For example: Terraria, Vampire Survivors

Game Team Organization

• Three major disciplines in game companies:
• Design

• Figure out what the game is
• Provide specs for key systems
• Create content (dialog, levels, questions)
• Balance and polish

• Art
• Figure out how the game looks look
• Make assets (textures, models, animations, shaders)
• Artists are amazing. Your exposure at OSU will be sadly limited.

• Engineering
• Support artists and game designers in realizing their visions
• Make tools and systems for designers and artists to use
• Build the things they cannot build themselves
• Put it all together

• Other disciplines: Production, QA, Audio

What tools do teams use to make games?

• When Pipeworks started in 1999:
• Blank hard drives
• Visual Studio
• 3ds Max SDK

• Now: Game Engines
• Unity
• Unreal

• A few custom engines survive…

• Art is made with DCC tools
• Maya, Blender, 3DS Max
• Photoshop

Eventual Goal

• Eventually: Artists and designers will be able to use engines to make
games without engineers
• This is how it show be: You can write a novel w/o engineering support!
• This is decades off
• Some designers program…the line is blurry

• Right now: The game engine will provide 95+% of the code needed to
make the game
• Again, typical: 95% of the code to display a web page is provided to you

• Our job is to provide what the game engine does not and fix when it
falls over

Is game programming still creative?

• Yes!
• Even more so than in the past

• No longer making triangle rasterizers and whatnot
• The bit the game engine doesn’t provide is often what makes a game

unique
• Designers provide only high-level specs of features

What skill do you need?
• Work in a team with different sorts of people

• Creative work can be difficult because engineers don’t like failure
• Typical CS Stuff – how to write large programs

• Software development (source control, integrations)
• Memory management, languages
• Algorithms, Data Structures
• User Interface (important)
• Discrete Math

• Other Stuff
• Graphics

• But not as much as you think
• 3D Math
• Simulation & Physics
• Real-time networking

• I hope this class helps with the Other Stuff!
• Useful not only for games, but machine vision, robotics, and so on

What makes a great games programmer?

People Skills

Com
m

unication

Team
w

ork

Em
otional Intelligence

Mainstream CS Skills

W
rite readable code that

w
orks

Technical Planning

Traditional algorithm
s

Game Programming Skills

Gam
e technology

Design sense

Industry Experience

What do we actually do?

• A sample of what our engineers have been working on:
• Fix performance problems
• Simplified physics
• Special Graphical Techniques
• UI
• AI
• Procedural Content
• Networking
• Back-End
• DevOps
• Game Code

Performance
• Engineering is not required to make high visual quality
• Dev model: Artists add stuff until there is a problem then engineers figure out why
• Better hardware doesn’t help because we make more detailed content
• The goal is a consistent framerate (30hz or 60hz)

• Stuttering can be very noticeable
• Amortized speed doesn’t count

• Rarely are perf problems fixed with just code changes
• No more rewriting stuff in assembler
• Shaders are an exception

• Most important thing is to understand the rendering & update pipeline to find bottlenecks
• Solutions are often content changes, pre-calculation and so forth
• GPU’s hate state change
• Threading when possible

• Memory bandwidth problems can dominate

Culling and Streaming

• The best way to improve performance is to load & draw less stuff
• Strategy for culling and streaming is genre dependent:

• RTS - large number of objects, but camera typically points down
• Interior shooter: Portals
• Exterior open work game: zone and imposters
• Stadium sports: doesn’t matter

• This is where general purpose engines struggle the most
• Engineering defines & implements the culling strategy

Simplified Physics

• Gameplay is hard to design and time consuming to make
• Physics is gameplay for “free!”

• Angry Birds is a demo for Box2D
• Free until it’s not – gameplay has to be predictable, performant and understandable
• Many game engines have very sophisticated physics systems

• The math is crazy
• Check out Bullet Physics

• Even with physics systems, engineering needed for:
• Optimizations
• Fractures
• Tires/Cloth/Soft bodies

• Physics based games often do better without a complex physics simulation
• Again, predictable/controllable behavior is the goal
• E.g. Roller Coasters, Pinball, Driving

Networking

• Why multiplayer in everything?
• Sartre: “Hell Free content is other people”
• One view: World of Warcraft is a themed chat room

• Synchronizing, managing & debugging a distributed simulation…hard
• Built in engine support is often not sufficient

• Error handling
• Most CS problems, errors are unusual
• Everything that can go wrong, will…a lot…and users will make it worse

• TCP and typical web API’s not well-suited to games
• Typically use UDP with some sort of reliability layer – check out Enet

• Strategy is to ration bandwidth and prioritize updates
• Always a tradeoff between latency, and accuracy

• This will vary per-genre and per-game
• Will use various blending strategies to smooth out updates

Back End

• Most of our games are connected to a server of some sort
• Profile storage

• Instead of saving on disc
• Typically, a SQL database with web front end. Access via HTTPS and REST.

• Matchmaking
• This is a hard problem because people like to smurf

• Microtransactions
• Analytics

• Most of the work is in the call sites, not in the analytics engine
• Gets a bad rap, but is very positive for games overall

• Historical note:
• Back-end connections saved the PC from Piracy

Special Graphical
Techniques
• Often games have a graphical effect

linked to gameplay
• E.g. Brutal Legend

• Most shaders can be made by
artists
• DCC tools make graphics easy
• Writing shaders is now a technical art

position
• Fixing shader performance is a

graphics engineer problem
• Particle systems: Yes!

Curved World in Animal Crossing

This is done with a vertex shader-the world is flat!

Monument Valley –
perspective rendering tricks

Borderlands 3 – Cel Shading

Other special techniques…

AI
• A famously vague term

• Not at all what CS people mean
• For games we usually want:

• Pathfinding
• Satisfying opponents
• Believable NPC’s
• Optimality not required (or even desirable)

• Usually bespoke and rule-based
• Harder than you might think
• Need to know rules in detail
• Check out Steering Behaviors For Autonomous Characters
• We have been trying to make autonomous vehicles long before it was fashionable. Good luck!

• Design needs a lot of help with AI
• Design was control but also emergent behavior which are at odds

• A lot of interest in reinforcement learning techniques.

UI

• User interface is important
• Often mixes with 3d in the world
• Rendering is done by the 3d pipeline

• Using 3d is faster than raster methods
• Flash no more!
• Engines have their own UI systems

• Typical Pipeline:
• Screen mock-ups made by designers
• Pretty is added by artists
• Functionality is from engineering

• Lots of color, and animation and VFX
• Madden: 500 screens

Procedural Content

• Stuff that artists and designers don’t make
• Allows replayability at low-cost

• Once again: Want content for free!
• Avatar systems

• E.g Character Creation
• User created structures

• E.g. buildings in Fortnite
• Foliage
• Crowd and background characters
• Terrain

• The world in Minecraft or Terraria
• Very game-specific

• Always made by engineers

DEVOPs

• Old days: 2-year dev cycle leading to a gold master disc
• Sooo much stress!

• Now: 18 month dev cycle, early access launch, periodic updates
• Engineering owns the build/deploy tool chain

• Jenkins/CI etc.
• Source control, which is notably difficult for Games

• Git model does not work as well (but LFS helps)

• Satisfy Console and Platform requirements
• Far more rigorous than the App Store

Game Code

• Code that implements the core play mechanic of your game
• New mechanics are very rare

• E.g.: FPS, RTS, Racing, Fighting
• Most are already implemented in engines or available as samples or in asset

stores
• In this case, you read and modify the existing code to fit the design

• Typically include:
• Camera
• Control
• Character animation state machine
• Game rules

Underlying Skills diff vs. Typical CS

• 3d Math
• Matrices
• Simple physics
• Blending

• Nature is smooth
• Mesh Manipulation
• Robustness

Robustness: Floating Point is the Devil

• Traditional scientific programming
tends to underplay robustness issues
• What does this return?

• Does it even return?

float add_forever()
{

float t = 0;

while (1)
{

float next = t + 1.f / 30;
if (next == t)

break;
t = next;

}

return t;
}

Answer

1048576.00 = 2^20 = 2^25 / 2^5

• If you update your simulation time this way, time stops after ~12 days
• Most games & graphics software runs on 32-bit float
• A big issues for flight sims and large worlds
• Safety in double is illusory

Thank You

