Inverse Kinematics

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Inverse Kinematics solves the problem “if I know the link transformation parameters, where are the links?”.

Inverse Kinematics (IK) solves the problem “If I know where I want the links to be \((X^*, Y^*)\), what link transformation parameters will put them there?”
Inverse Kinematics (IK):
Things Need to Move – What Parameters Will Make Them Do That?
Cyclic Coordinate Descent (CCD) Method

The idea is to change Θ_1 so that (X,Y) are as close to (X^*,Y^*) as possible. Then change Θ_2. Then change Θ_3. Then change Θ_1. Then change Θ_2. Then change Θ_3. Then change Θ_1.

\cdots
Changing Θ_1

Holding Θ_2 and Θ_3 constant, rotate Θ_1 towards (X^*, Y^*) so that the dashed purple lines line up.
Changing Θ_1
Changing Θ_2

Holding Θ_1 and Θ_3 constant, rotate Θ_2 towards (X^*,Y^*) so that the dashed purple lines line up.
Changing Θ_2
Changing Θ_3

Holding Θ_1 and Θ_2 constant, rotate Θ_3 towards (X^*,Y^*) so that the dashed purple lines line up.
Changing Θ_3
Now, do it again -- Changing Θ_1
Now, do it again -- Changing Θ_1
Now, do it again -- Changing Θ_2
Now, do it again -- Changing Θ_2
Now, do it again -- Changing Θ_3
Now, do it again -- Changing Θ_3
Computing how much to change a rotation by
(in this example, we are changing θ_2)

Where we are now: (X_3, Y_3)

Where we want to be: (X^*, Y^*)

Use the C/C++ `atan2()` function:

$$\theta^* = \text{atan2}(Y^* - Y_2, X^* - X_2);$$

$$\theta = \text{atan2}(Y_3 - Y_2, X_3 - X_2);$$

$$\Delta \theta_2 = \theta^* - \theta$$

Do not use the C/C++ `atan()` function:

$$\theta^* = \text{atan}((Y^* - Y_2) / (X^* - X_2));$$

$$\theta = \text{atan}((Y_3 - Y_2) / (X_3 - X_2));$$

$$\Delta \theta_2 = \theta^* - \theta$$