Inverse Kinematics

Forward Kinematics solves the problem "if I know the link transformation parameters, where are the links?".

Inverse Kinematics (IK) solves the problem "If I know where I want the links to be \((X^*, Y^*)\), what link transformation parameters will put them there?"
Inverse Kinematics (IK):
Things Need to Move – What Parameters Will Make Them Do That?

Cyclic Coordinate Descent (CCD) Method

The idea is to change Θ_1 so that (X,Y) are as close to (X^*,Y^*) as possible.
Then change Θ_2.
Then change Θ_3.
Then change Θ_1.
Then change Θ_2.
Then change Θ_3.
Then change Θ_1.

\[(X^*,Y^*) \]

\[(X,Y) \]

Ground
Changing Θ_1

Holding Θ_2 and Θ_3 constant, rotate Θ_1 towards (X^*, Y^*) so that the dashed purple lines line up.
Holding θ_1 and θ_3 constant, rotate θ_2 towards (X^*, Y^*) so that the dashed purple lines line up.
Holding θ_1 and θ_2 constant, rotate θ_3 towards (X^*, Y^*) so that the dashed purple lines line up.
Now, do it again -- Changing θ_1
Now, do it again -- Changing Θ_2
Now, do it again -- Changing Θ3

(X*,Y*)

(X,Y)

Now, do it again -- Changing Θ3

(X*,Y*)

(X,Y)
Computing how much to change a rotation by (in this example, we are changing θ_2)

Where we are now: (X_2, Y_2)

Where we want to be: (X_3, Y_3)

Use the C/C++ $\text{atan2}()$ function:

\[
\theta' = \text{atan2}(Y' - Y_2, X' - X_2); \\
\theta = \text{atan2}(Y_3 - Y_2, X_3 - X_2); \\
\Delta \theta_2 = \theta' - \theta
\]

Do not use the C/C++ $\text{atan}()$ function:

\[
\theta' = \text{atan}((Y' - Y_2) / (X' - X_2)); \\
\theta = \text{atan}((Y_3 - Y_2) / (X_3 - X_2)); \\
\Delta \theta_2 = \theta' - \theta
\]