SI Physics Units (International System of Units)

<table>
<thead>
<tr>
<th>Quantity</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear position</td>
<td>Meters</td>
</tr>
<tr>
<td>Linear velocity</td>
<td>Meters/second</td>
</tr>
<tr>
<td>Linear acceleration</td>
<td>Meters/second^2</td>
</tr>
<tr>
<td>Force</td>
<td>Newtons (kg·m/s^2)</td>
</tr>
<tr>
<td>Energy</td>
<td>Joules (N·m)</td>
</tr>
<tr>
<td>Power</td>
<td>Watts (J/s)</td>
</tr>
<tr>
<td>Mass</td>
<td>Kilograms</td>
</tr>
<tr>
<td>Weight</td>
<td>Newtons</td>
</tr>
<tr>
<td>Density</td>
<td>Kilograms/meter^3</td>
</tr>
<tr>
<td>Time</td>
<td>Seconds</td>
</tr>
<tr>
<td>Pressure</td>
<td>Pascals (N/m^2)</td>
</tr>
<tr>
<td>Momentum</td>
<td>Kilograms-meters/second</td>
</tr>
<tr>
<td>Angular position</td>
<td>Radians</td>
</tr>
<tr>
<td>Angular velocity</td>
<td>Radians/second</td>
</tr>
<tr>
<td>Angular acceleration</td>
<td>Radians/second^2</td>
</tr>
<tr>
<td>Moment (torque)</td>
<td>Newton-meters</td>
</tr>
<tr>
<td>Moment of Inertia</td>
<td>Kilogram-meters^2</td>
</tr>
<tr>
<td>Temperature</td>
<td>° Kelvin</td>
</tr>
</tbody>
</table>

Some Useful Conversions

- 1 meter = 39.37 inches = 3.28 feet
- 1 mile = 1,610 meters = 1.610 kilometers
- 1 mile per hour = 1.467 feet per second
- 1 mile per hour = 0.447 meters per second
- 1 gallon = 3.79 liters
- 1 cubic foot = 7.48 gallons = 28.35 liters
- 1 kilogram = 2.2 pounds (mass, at Earth’s surface)
- 1 Newton = 0.224 pounds (force)
- 1 pound = 4.45 Newtons (force)
- 1 radian = 57.3°

What's the Difference Between Mass and Weight?

Mass is the resistance to acceleration and deceleration. You can also think of it as inertia – how difficult it is to accelerate a wagon with something in it.

Weight is the force pulling you towards the center of whatever planetary body you happen to be standing on.

On the moon, your mass would be the same as it is on Earth. It would still require the same amount of force to push you in a (frictionless) wagon.

On the moon, however, your weight would be about \(\frac{1}{6} \) of what it is on Earth.

Because most of us are stuck on Earth, within a mile or two of sea level, in common practice, "mass" and "weight" designate about the same thing.
Newton's Three Laws of Motion

1. Every object in motion keeps that same motion (i.e., same speed and direction) unless an external force acts on it.
2. Force equals mass times acceleration (F = ma).
3. For every action, there is an equal and opposite reaction.

Acceleration Due to Gravity

Newton's Gravitational Law says that the attraction force between two objects is the product of their masses times the gravitational constant G, divided by the square of the distance between them:

\[F = \frac{Gm_1m_2}{d_{12}^2} \]

where: \(G = 6.67 \times 10^{-11} \text{Nm}^2\text{kg}^{-2} \)

and \(d_{12} \) is the distance between body 1 and body 2.

For an object, \(m \), at or near the surface of the Earth (i.e., \(d_{12} \) is the radius of the Earth) this simplifies to:

\[F = mg \]

where: \(g = 9.8 \text{ m/sec}^2 = 32.2 \text{ ft/sec}^2 \)

\(g \) is known as the Acceleration Due to (Earth's) Gravity.

Fun facts -- gravitational acceleration on other bodies

<table>
<thead>
<tr>
<th>Body</th>
<th>Gravity Acceleration (m/sec^2)</th>
<th>g's</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mercury</td>
<td>3.70</td>
<td>0.38</td>
</tr>
<tr>
<td>Venus</td>
<td>8.87</td>
<td>0.90</td>
</tr>
<tr>
<td>Earth</td>
<td>9.81</td>
<td>1.00</td>
</tr>
<tr>
<td>Moon</td>
<td>1.62</td>
<td>0.17</td>
</tr>
<tr>
<td>Mars</td>
<td>3.71</td>
<td>0.38</td>
</tr>
<tr>
<td>Jupiter</td>
<td>24.79</td>
<td>2.53</td>
</tr>
<tr>
<td>Saturn</td>
<td>10.44</td>
<td>1.06</td>
</tr>
<tr>
<td>Uranus</td>
<td>8.69</td>
<td>0.89</td>
</tr>
<tr>
<td>Neptune</td>
<td>11.15</td>
<td>1.14</td>
</tr>
</tbody>
</table>

Constant-Acceleration Formulas (these need to be memorized)

\[v_f = v_i + at \]
\[d_f = d_i + v_i t + \frac{1}{2}at^2 \]

If you are moving vertically, then the acceleration, \(a \), will be the acceleration due to gravity, \(g \):

\[d_f = d_i + v_i t + \frac{1}{2}gt^2 \]

\(g = 9.8 \text{ meters/second}^2 = 32.2 \text{ feet/second}^2 \)

If you are moving horizontally, there is no acceleration unless some outside horizontal force creates it.

\[d_f = d_i + v_i t \]

The following formula is handy because it relates all the usual quantities, but doesn’t require you to know the elapsed time:

\[v_f^2 = v_i^2 + 2a(d_f - d_i) \]

Projectile Motion

\[X: \quad d_x = d_{i,x} + v_{i,x}t \]
\[Y: \quad h_f = h_i + v_{i,y}t + \frac{1}{2}gt^2 \]

Initial Quantities:
\[a_y = g \]
\[v_{i,x} = V \cos \theta \]
\[v_{i,y} = V \sin \theta \]

Quantities in Flight:
\[d_x = d_{i,x} + v_{i,x}t \]
\[h_f = h_i + v_{i,y}t + \frac{1}{2}gt^2 \]
A Projectile Launches – Where Does it End Up?

Strategy: Treat each case separately. Figure out what limitation makes the projectile stop moving, calculate the time to get to that, and then see where the projectile would have ended up first.

Case 1. What if it Never Reaches the Cliff?

Y Distance Equation:

\[y = 0 + v_y t + \frac{1}{2} g t^2 \]

Solve for the time:

\[t = \frac{-v_y + \sqrt{v_y^2 + 2gy}}{-g} \]

Note: \(g < 0 \)

How Far will it Go?

\[d_x = d_{0x} + v_x t \]

Case 2. What if it Hits the Side of the Cliff?

X Distance Equation:

\[d_{x} = 0 + v_x t \]

\[d_{x} = v_x t \]

Solve for the time:

\[t' = \frac{d_x}{v_x} \]

How High will it Go?

\[h_y = 0 + v_y t + \frac{1}{2} gt^2 \]

Case 3. What if it Lands on Top of the Cliff?

Y Distance Equation:

\[h_{\text{impact}} = 0 + v_y t + \frac{1}{2} gt^2 \]

\[\frac{1}{2} gt^2 + v_y t - h_{\text{impact}} = 0 \]

Solve for the time:

\[t' = \frac{-v_y + \sqrt{v_y^2 + 2gh_{\text{impact}}}}{-g} \]

Note: \(g < 0 \)

How Far will it Go?

\[d_x = d_{0x} + v_x t' \]

Note: If \(h_{\text{impact}} = 0 \), this becomes Case #1

How do you decide if Case 1, 2, or 3 is the Correct Solution?

Consider Case #1: If the horizontal distance that it travels is ≤ \(d_{\text{cliff}} \), then this is what happened.

Consider Case #2: If the height of the projectile is ≤ \(h_{\text{cliff}} \) as its horizontal distance passes \(d_{\text{cliff}} \), then this is what happened.

Otherwise, Case #3 is what happened.

Case 3 Projectile Motion:

How Long will the Projectile Stay in Flight?

\[t' = \frac{-v_y \pm \sqrt{v_y^2 - 2g(d_{0y} - d_{\text{impact}})}}{g} \]

Why are there 2 solutions for \(t' \)?

How do you know which one is the correct one?
A Ball Bouncing in a Box

Current Position = (x,y)
Current Velocity = (v_x,v_y)

1. Figure out which equation produces the minimum positive t value
2. Advance the ball that much
3. Perform the bounce in the proper direction
4. Handle the rest of the time step

\[
\begin{align*}
\text{Minimum Positive } t & = \sqrt{\frac{2(y - y_{\text{floor}} - \text{radius})}{g}} \\
\text{Next Position} & = (x + v_x t, y + v_y t + \frac{1}{2} gt^2) \\
\text{Next Velocity} & = (v_x, v_y) \\
\end{align*}
\]

The Physics of Bouncing Against a Floor or Wall

To treat the case of an object bouncing against an immovable object, such as a floor or a solid wall, the resulting velocity is:

\[
\begin{align*}
\text{Next Position} & = (x + v_x t, y + v_y t + \frac{1}{2} gt^2) \\
\text{Next Velocity} & = (v_x, v_y) \\
\end{align*}
\]

The Physics of Bouncing Against a Floor or Wall

Balls Bounced on a Concrete Surface:

<table>
<thead>
<tr>
<th>Ball Material</th>
<th>CoR</th>
</tr>
</thead>
<tbody>
<tr>
<td>range golf ball</td>
<td>0.00</td>
</tr>
<tr>
<td>tennis ball</td>
<td>0.05</td>
</tr>
<tr>
<td>steel ball bearing</td>
<td>0.59</td>
</tr>
<tr>
<td>hollow, hard plastic ball</td>
<td>0.80</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{Energy Lost} & = (1 - \text{CoR})^2 \cdot \frac{1}{2} m v^2 \\
\text{Energy Retained} & = \text{CoR}^2 \cdot \frac{1}{2} m v^2 \\
\text{Energy} & = \frac{1}{2} m v^2 \\
\end{align*}
\]

Let’s Try it with Some Numbers

Find how much time it takes for the projectile to hit the ground.
Find how far the projectile travels horizontally before hitting the ground.
Find the maximum height the projectile reaches before starting back down.

\[
\begin{align*}
\text{V} & = (10, 10) \text{ meters/sec} \\
\text{Simplify } g & = \text{-10 meters/sec}^2 \\
\end{align*}
\]

1. Solve for t when \(d = 0 \).
2. Solve for t when \(\Delta d = \text{impact} \).

Where \(a \) is the Coefficient of Restitution (CoR), and is a measure of how much energy is retained during the bounce.

\[
\begin{align*}
\text{Energy Lost} & = (1 - \text{CoR})^2 \cdot \frac{1}{2} m v^2 \\
\text{Energy Retained} & = \text{CoR}^2 \cdot \frac{1}{2} m v^2 \\
\text{Energy} & = \frac{1}{2} m v^2 \\
\end{align*}
\]

The Physics of Bouncing Against a Floor or Wall

Ball Material CoR

range golf ball | 0.00 |
tennis ball | 0.05 |
steel ball bearing | 0.59 |
ball of rubber bands | 0.80 |

The Physics of Bouncing Against a Floor or Wall

// take a time step of time length tmin, using the projectile motion equations:
// if a bounce is going to occur, tmin takes the ball right up to the surface:
// change the proper velocity component:
// if nothing was hit in this time step, just return:
switch (which)
{
 case NOTHING_HIT:
 return;
 case HIT_LEFT:
 \(v'_x = v_x + gt' \)
 break;
 case HIT_RIGHT:
 \(v'_x = v_x - gt' \)
 break;
 case HIT_FLOOR1:
 \(v'_y = v_y + \frac{1}{2} gt'^2 \)
 break;
 case HIT_FLOOR2:
 \(v'_y = v_y - \frac{1}{2} gt'^2 \)
 break;
}
dt -= tmin; // after the bounce, we might still have some time step left