Another Ray-Triangle Intersection Algorithm

There are many applications for finding if a line intersects the inside of a triangle, and, if so, where. Examples include collision detection, ray-tracing, etc.

Parametrizing a Ray

Given:
- S is the (x,y,z) starting point
- Q is the (x,y,z) direction of travel

Then, the (x,y,z) position of a point p at some position along its direction of travel is:

$$p = S + tQ$$

with $t \geq 0$.

Parametrizing a Triangle

It’s often useful to be able to parameterize a triangle into (u,v), like this:

$$p = P0 + u*(P1-P0) + v*(P2-P0)$$

Note! There is no place in this triangle where $u = 1$ and $v = 1$.

The Setup

We want to find out where the ray intersects the triangle. That is, where is the point p that is common to both the ray and the triangle?

Equation Setup

Triangle: $p = P0 + u'(P1-P0) + v'(P2-P0)$

Ray: $p = S + tQ$

Re-arranging:

$P0 + u'(P1-P0) + v'(P2-P0) = S + tQ$

Re-arranging some more:

$-Q + u'(P1-P0) + v'(P2-P0) = S - P0$

Then collecting terms, we get:

$$A t + Bu + Cv = D$$

where:

- $A = -Q$
- $B = P1-P0$
- $C = P2-P0$
- $D = S - P0$
Three Equations, Three Unknowns

Remembering that this equation is really 3 equations in \((x,y,z)\):

\[
A_t + B_u + C_v = D
\]

we really have 3 equations with 3 unknowns, which can be cast into a matrix form:

\[
\begin{pmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z
\end{pmatrix}
\begin{pmatrix}
t \\
u \\
v
\end{pmatrix} =
\begin{pmatrix}
D_x \\
D_y \\
D_z
\end{pmatrix}
\]

Our goal is to solve this for \(t*, u*,\) and \(v*\)

Flashback: The Determinant of a 3x3 Matrix

\[
\text{det}
\begin{pmatrix}
M_{00} & M_{01} & M_{02} \\
M_{10} & M_{11} & M_{12} \\
M_{20} & M_{21} & M_{22}
\end{pmatrix}
= M_{00} \times [M_{11} \times M_{22} - M_{12} \times M_{21}] \\
- M_{01} \times [M_{10} \times M_{22} - M_{12} \times M_{20}] \\
+ M_{02} \times [M_{10} \times M_{21} - M_{11} \times M_{20}]
\]

Compute the Determinant of a 3-Column Matrix using GLM

```c
float Determinant( glm::vec3 c0, glm::vec3 c1, glm::vec3 c2 )
{
    float d00 = c0.x * ( c1.y*c2.z - c1.z*c2.y );
    float d01 = c1.x * ( c0.y*c2.z - c0.z*c2.y );
    float d02 = c2.x * ( c0.y*c1.z - c0.z*c1.y );
    float d10 = c0.z * ( c1.x*c2.y - c1.y*c2.x );
    float d11 = c1.z * ( c0.x*c2.y - c0.y*c2.x );
    float d12 = c2.z * ( c0.x*c1.y - c0.y*c1.x );
    float d20 = c0.y * ( c1.z*c2.x - c1.x*c2.z );
    float d21 = c1.y * ( c0.z*c2.x - c0.x*c2.z );
    float d22 = c2.y * ( c0.x*c1.z - c0.z*c1.x );
    return d00 - d01 + d02;
}
```

Solve for \((t,u,v)\) using Cramer's Rule

\[
\begin{pmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z
\end{pmatrix}
\begin{pmatrix}
t \\
u \\
v
\end{pmatrix} =
\begin{pmatrix}
D_x \\
D_y \\
D_z
\end{pmatrix}
\]

\[
\begin{align*}
D_0 &= \text{det}
\begin{pmatrix}
A_x & B_x & C_x \\
D_x & B_y & C_y \\
D_z & B_z & C_z
\end{pmatrix} \\
D_1 &= \text{det}
\begin{pmatrix}
A_x & B_x & C_x \\
A_y & D_y & C_y \\
A_z & D_z & C_z
\end{pmatrix} \\
D_2 &= \text{det}
\begin{pmatrix}
A_x & B_x & C_x \\
A_y & B_y & D_y \\
A_z & B_z & D_z
\end{pmatrix}
\end{align*}
\]

\[
\begin{align*}
t* &= \frac{D_0}{D} \\
u* &= \frac{D_1}{D} \\
v* &= \frac{D_2}{D}
\end{align*}
\]

1. Compute \(D_0\)
2. If \(D_0 \approx 0\), then the ray is parallel to the plane of the triangle
3. Compute \(D_1\)
4. Compute \(t*\)
5. If \(t* < 0\), the ray goes away from the triangle
6. Compute \(D_2\)
7. Compute \(u*\)
8. If \(u* < 0\) or \(u* > 1\), then the ray hits outside the triangle
9. Compute \(D_0\)
10. Compute \(v*\)
11. If \(v* < 0\) or \(v* > 1 - u*\), then the ray hits outside the triangle
12. The intersection is at the point \(p = S + Qt*\)

This all is known as the Möller-Trumbore Triangle Intersection Algorithm

Setting Up the Equations

```c
float Ax = -Qx; 
float Ay = -Qy; 
float Az = -Qz; 
float Bx = P1x - P0x; 
float By = P1y - P0y; 
float Bz = P1z - P0z; 
float Cx = P2x - P0x; 
float Cy = P2y - P0y; 
float Cz = P2z - P0z; 
float Dx = Sx - P0x; 
float Dy = Sy - P0y; 
float Dz = Sz - P0z; 
```
Cramer’s Rule using GLM

```c++
glm::vec3 colA = glm::vec3( Ax, Ay, Az );
glm::vec3 colB = glm::vec3( Bx, By, Bz );
glm::vec3 colC = glm::vec3( Cx, Cy, Cz );
glm::vec3 colD = glm::vec3( Dx, Dy, Dz );

float d0 = Determinant( colA, colB, colC );
float dt = Determinant( colD, colB, colC );
float du = Determinant( colA, colD, colC );
float dv = Determinant( colA, colB, colD );

float tstar = dt / d0;
float ustar = du / d0;
float vstar = dv / d0;
```