Another Ray-Triangle Intersection Algorithm

Why Do We Want to Intersect a Ray and a Triangle?
There are many applications for finding if a line intersects the inside of a triangle, and, if so, where. Examples include collision detection, ray-tracing, etc.

Parametrizing a Ray
Given:
S is the \((x,y,z)\) starting point
Q is the \((x,y,z)\) direction of travel

Then, the \((x,y,z)\) position of a point \(p\) at some position along its direction of travel is:

\[p = S + Q \]
\[t \geq 0. \]

Parametrizing a Triangle
It’s often useful to be able to parameterize a triangle into \((u,v)\), like this:

\[p = P_0 + u(P_1-P_0) + v(P_2-P_0) \]

Note! There is no place in this triangle where \(u = 1 \) and \(v = 1 \).

The Setup
We want to find out where the ray intersects the triangle. That is, where is the point \(p \) that is common to both the ray and the triangle?

Equation Setup
Triangle: \(p = P_0 + u(P_1-P_0) + v(P_2-P_0) \)
Ray: \(p = S + tQ \)

Re-arranging:
\(P_0 + u(P_1-P_0) + v(P_2-P_0) = S + tQ \)
Re-arranging some more:
\(-tQ + u(P_1-P_0) + v(P_2-P_0) = S - P_0 \)

Then collecting terms, we get:
\[At + Bu + Cv = D \]

where:
\[A = -Q \]
\[B = P_1-P_0 \]
\[C = P_2-P_0 \]
\[D = S - P_0 \]
Three Equations, Three Unknowns

Remembering that this equation is really 3 equations in (x,y,z):

\[A_t + Bu + Cv = D \]

we really have 3 equations with 3 unknowns, which can be cast into a matrix form

\[
\begin{bmatrix}
A_x & B_x & C_x \\
A_y & B_y & C_y \\
A_z & B_z & C_z
\end{bmatrix}
\begin{bmatrix}
t \\
u \\
v
\end{bmatrix} =
\begin{bmatrix}
D_x \\
D_y \\
D_z
\end{bmatrix}
\]

Our goal is to solve this for \(t^* \), \(u^* \), and \(v^* \).

Solve for \((t^*,u^*,v^*) \) using Cramer's Rule

\[
\begin{align*}
D_0 &= \text{det} \begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ A_z & B_z & C_z \end{bmatrix} \\
D_1 &= \text{det} \begin{bmatrix} A_x & B_x & C_x \\ A_0 & B_0 & C_0 \\ A_z & B_z & C_z \end{bmatrix} \\
D_2 &= \text{det} \begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ A_0 & B_0 & C_0 \end{bmatrix} \\
D_3 &= \text{det} \begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ A_z & B_z & C_0 \end{bmatrix} \\
D_4 &= \text{det} \begin{bmatrix} A_x & B_x & C_x \\ A_0 & B_0 & C_0 \\ A_0 & B_0 & C_0 \end{bmatrix} \\
D_5 &= \text{det} \begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ A_0 & B_0 & C_0 \end{bmatrix} \\
D_6 &= \text{det} \begin{bmatrix} A_x & B_x & C_x \\ A_y & B_y & C_y \\ A_0 & B_0 & C_0 \end{bmatrix}
\end{align*}
\]

\[
\begin{align*}
t^* &= \frac{D_1}{D_0} \\
u^* &= \frac{D_2}{D_0} \\
v^* &= \frac{D_3}{D_0}
\end{align*}
\]

Flashback: The Determinant of a 3x3 Matrix

\[
\text{det } M = M_{00}M_{22} - M_{02}M_{20} = M_{01}M_{12} - M_{02}M_{10} = M_{00}M_{11} - M_{01}M_{10}
\]

Computing the Determinant of a 3-Column Matrix using GLM

```c
float Determinant(glm::vec3 c0, glm::vec3 c1, glm::vec3 c2)
{
    float d00 = c0.x * (c1.y*c2.z - c1.z*c2.y);
    float d01 = c1.x * (c0.y*c2.z - c0.z*c2.y);
    float d02 = c2.x * (c0.y*c1.z - c0.z*c1.y);
    return d00 - d01 + d02;
}
```

The Steps

1. Compute \(D_0 \).
2. If \(D_0 \approx 0 \), then the ray is parallel to the plane of the triangle.
3. Compute \(D_1 \).
4. Compute \(t^* \).
5. If \(t^* < 0 \), the ray goes away from the triangle.
6. Compute \(D_2 \).
7. Compute \(u^* \).
8. If \(u^* < 0 \) or \(u^* > 1 \), then the ray hits outside the triangle.
9. Compute \(D_3 \).
10. Compute \(v^* \).
11. If \(v^* < 0 \) or \(v^* > 1-u^* \), then the ray hits outside the triangle.
12. The intersection is at the point \(p = S + Qt^* \).

This all is known as the Möller-Trumbore Triangle Intersection Algorithm.

Setting Up the Equations

```c
float Ax = -Qx;
float Ay = -Qy;
float Az = -Qz;
float Bx = P1x - P0x;
float By = P1y - P0y;
float Bz = P1z - P0z;
float Cx = P2x - P0x;
float Cy = P2y - P0y;
float Cz = P2z - P0z;
float Dx = Sx - P0x;
float Dy = Sy - P0y;
float Dz = Sz - P0z;
```
Cramer's Rule using GLM

```cpp
glm::vec3 colA = glm::vec3( Ax, Ay, Az );
glm::vec3 colB = glm::vec3( Bx, By, Bz );
glm::vec3 colC = glm::vec3( Cx, Cy, Cz );
glm::vec3 colD = glm::vec3( Dx, Dy, Dz );

float d0 = Determinant( colA, colB, colC );
float dt  = Determinant( colD, colB, colC );
float du = Determinant( colA, colD, colC );
float dv = Determinant( colA, colB, colD );

float tstar = dt / d0;
float ustar = du / d0;
float vstar = dv / d0;
```