Students have either already taken or started taking this quiz, so be careful about editing it. If you change any quiz questions in a significant way, you may want to consider regrading students who took the old version of the quiz.

1. "Momentum" equals:
 - $m \cdot v$
 - $0.5 \cdot m \cdot v$
 - $m \cdot v \cdot v$
 - $0.5 \cdot m \cdot v \cdot v$

2. "Energy" equals:
 - $0.5 \cdot m \cdot v \cdot v$
 - $m \cdot v$
 - $0.5 \cdot m \cdot v$
 - $m \cdot v \cdot v$
3. In a collision, what quantities are always conserved?

- Momentum only
- Energy only
- Energy and Momentum
- Neither Energy nor Momentum

4. When 2 moving bodies, a and b, collide (unlike your Project #4 which only had one body colliding), the Coefficient of Restitution comes into play according to which of the following? "v" refers to the velocity of a body. The primes (') refer to velocities after the collision. The "a" and "b" refer to each of the 2 bodies.

- \(v'b - v'a = -e(v_b - v_a) \)
- \(v'b - v'a = e(v_b - v_a) \)
- \(v'b = -e(v_a) \)
- \(v'a = e(v_b) \)

5. In a collision, if one of the objects is immovable (such as the wall in Project #4), can we use the 2-body collision equations anyway?

- Yes, just set the mass of the immovable object to infinity
- Yes, just set the mass of the immovable object to zero
No, you must use an equation setup just for this case

No, this case is completely different from what we were looking at