

 mjb – December 28, 2019

Using Noise with glman

The glman tool automatically creates a 3D noise texture and places it into Texture Unit 3. Your shaders
can access it through the pre-created uniform variable Noise3. You can reference it in your shader as
uniform sampler3D Noise3;
. . .
vec3 stp = uNoiseFreq * vMCposition;
vec4 nv = texture(Noise3, stp);

The “noise vector” texture nv is a vec4 whose components have separate meanings. The .r
component is the low frequency noise. The .g component is twice the frequency and half the amplitude of
the .r component, and so on for the .b and .a components. Each component is centered around the middle
value of .5

Component Term Term Range Term Limits

0 nv.r 0.5 ± .5000 0.0000 → 1.0000

1 nv.g 0.5 ± .2500 0.2500 → 0.7500

2 nv.b 0.5 ± .1250 0.3750 → 0.6250

3 nv.a 0.5 ± .0625 0.4375→ 0.5625

 sum 2.0 ± ~ 1.0 ~1.0 → 3.0

 sum – 1 1.0 ± ~ 1.0 ~0.0 → 2.0

 (sum – 1) / 2 0.5 ± ~ 0.5 ~0.0 → 1.0

 (sum – 2) 0.0 ± ~ 1.0 ~1.0 → 1.0

So, if you would like to have a four-octave noise function that ranges from 0. to 1, then do this:

float sum = nv.r + nv.g + nv.b + nv.a; // range is 1. -> 3.
 sum = (sum - 1.) / 2.; // range is now 0. -> 1.

If you would like to have a four-octave noise function that ranges from -1 to 1, then do this instead:
float sum = nv.r + nv.g + nv.b + nv.a; // range is 1. -> 3.
 sum = (sum - 2.); // range is now -1. -> 1.

By default, the glman 3D noise texture has dimensions 64 × 64 × 64. You can change this by putting
a command in your GLIB file of the form
Noise3D 128

to get dimension 128 × 128 × 128, or choose whatever resolution you want (up to around 400 × 400 ×
400). Remember that for the most general use, the resolution should be a power of two

The first time glman creates a 3D noise texture for you, it will take a few seconds. But, glman then writes
it to a local file, and the next time this 3D texture is needed, it is read from the file, which is a lot faster.

A 2D noise texture works the same way, except you get at it with
 uniform sampler2D Noise2;
 ...
 vec2 st = uNoiseFreq * vST;
 vec4 nv = texture(Noise2, st);

The only difference is that a 2D noise texture is indexed by a vec2 while the 3D noise texture is indexed
by a vec3, but both return a vec4.

