

1


2


3



5


6



## Computer-generated variety <br> Real blades of grass don't all look

 alike. Pixar writes programs that vary the color, height, width, and curve of the virtual blades of grass.

9

The way something looks tells a story. What is it made of? Is it new or old? Well taken care of or neglected? After a virtual 3D model is created, a surfacing artist constructs its appearance with computer programs called shaders. Shaders determine the way light scatters off the surface so it looks shiny, transparent, and smooth (like glass) or dull and rough (like rust).


A virtual 3D model of Mater with no shaders.

mjb - February 24, 2019


## Shaders

Shaders are programs that tell a computer how to display all aspects of an object's surface appearance.

mib - February 24,2019



Light
Arriving


$$
L\left(P, d_{0}, \lambda\right)=E\left(P, d_{0}, \lambda\right)+\int_{\Omega} L\left(P, d_{i}, \lambda\right) f\left(\lambda, d_{i}, d_{0}\right)\left(d_{i} \cdot \widehat{n}\right) d \Omega
$$

Light Departing


$B\left(x, d_{0}, \lambda\right)=E\left(P, d_{0}, \lambda\right)+\int_{\Omega} B\left(x, d_{i}, \lambda\right) f\left(x, \lambda, d_{i}, d_{0}\right)\left(d_{i} \cdot \widehat{n}\right) d \Omega$

In plain language, this is a simultaneous-equation energy balance:
"The light shining from the point $P$ is the reflection of the incoming light directed to the point $P$ from all of the other points in the scene."


$$
L\left(x, d_{0}, \lambda\right)=E\left(P, d_{0}, \lambda\right)+\int_{\Omega} L\left(x, d_{i}, \lambda\right) f\left(x, \lambda, d_{i}, d_{0}\right)\left(d_{i} \cdot \widehat{n}\right) d \Omega
$$

## Rendering

Rendering turns a virtual 3D scene into a 2D image
The virtual scene is set-the characters are shaded
and posed, the lights and camera are in position, and
the simulations are ready to run. But no one knows what
tit looks like until the rendering processs turns all that data
and programming into an image we can see. Pixar generates
low resolution renders for works in progress and high
resolution renders for the final film.

mjb - February 24, 2019

The virtual scene is set-the characters are shaded and posed, the lights and camera are in position, and the simulations are ready to run. But no one knows what it looks like until the rendering process turns all that data and programming into an image we can see. Pixar generates low resolution renders for works in progress and high resolution renders for the final film.


The virtual 3D scene
This wireframe is a
visualization of the data that defines the scene.


The rendered 2D image
Rendering calculates the color of every pixel in an image.


21


Moving with math
Computer animators position digital models into key poses. Then the computer fills in the transitions based on mathematical functions called splines.

> Acting from pose to pose
> Mr. Incredible is posed to run, but the transition to the next pose will tell if he is bounding along or tiring out.



25


While animators focus on acting, simulation programmers create motion that makes scenes feel alive and believable. Some simulations-hair, fur, and clothing-respond to the way a character moves. Other simulations recreate natural phenomena, such as fire or water. Programmers start with the underlying physics, but they balance believability with the artistic needs and the time it takes to run the simulation.


A frame from Brave before the simulated elements were included.


The same frame with the simulations added.





## Automated oceans

All the water in Finding Nemo is simulated using computer programs, not animated by hand. At the Oregon Museum of Science and Industry (OMSI)


