
mjb – August 13, 2020

1

Computer Graphics
Vulkan.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License

mjb – August 13, 2020

2

Computer Graphics

Who is the Real Vulkan?

Can you notice the difference? It’s subtle!

mjb – August 13, 2020

3

Computer Graphics

The Khronos Group, Inc. is a non-profit member-funded industry consortium, focused on the
creation of open standard, royalty-free application programming interfaces (APIs) for authoring
and accelerated playback of dynamic media on a wide variety of platforms and devices.
Khronos members may contribute to the development of Khronos API specifications, vote at
various stages before public deployment, and accelerate delivery of their platforms and
applications through early access to specification drafts and conformance tests.

Who is the Khronos Group?

mjb – August 13, 2020

4

Computer Graphics

Playing “Where’s Waldo” with Khronos Membership

mjb – August 13, 2020

5

Computer Graphics

Who’s Been Specifically Working on Vulkan?

mjb – August 13, 2020

6

Computer Graphics

Vulkan

• Largely derived from AMD’s Mantle API

• Also heavily influenced by Apple’s Metal API and Microsoft’s DirectX 12

• Goal: much less driver complexity and overhead than OpenGL has

• Goal: much less user hand-holding

• Goal: higher single-threaded performance than OpenGL can deliver

• Goal: able to do multithreaded graphics

• Goal: able to handle tiled rendering

mjb – August 13, 2020

7

Computer Graphics

Application

Vulkan: a Simplified Block Diagram

Instance

Physical
Device

Logical
Device

Q
ue

ue Command Buffer

mjb – August 13, 2020

8

Computer Graphics

VkBufferCreateInfo vbci;
vbci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
vbci.pNext = nullptr;
vbci.flags = 0;
vbci.size = << buffer size in bytes >>
vbci.usage = VK_USAGE_UNIFORM_BUFFER_BIT;
vbci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
vbci.queueFamilyIndexCount = 0;
vbci.pQueueFamilyIndices = nullptr;

VK_RESULT result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

VkMemoryRequirements vmr;

result = vkGetBufferMemoryRequirements(LogicalDevice, Buffer, OUT &vmr); // fills vmr

VkMemoryAllocateInfo vmai;
vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
vmai.pNext = nullptr;
vmai.flags = 0;
vmai.allocationSize = vmr.size;
vmai.memoryTypeIndex = 0;

result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATOR, OUT &MatrixBufferMemoryHandle);

result = vkBindBufferMemory(LogicalDevice, Buffer, MatrixBufferMemoryHandle, 0);

Vulkan Code has a Distinct “Style” of Setting Information in structs
and then Passing that Information as a pointer-to-the-struct

mjb – August 13, 2020

9

Computer Graphics

Vulkan Command Buffers

• Graphics commands are sent to command buffers

• Think OpenCL…

• E.g., vkCmdDoSomething(cmdBuffer, …);

• You can have as many simultaneous Command Buffers as you want

• Buffers are flushed when they are full or when the application wants them flushed

• Each command buffer can be filled from a different thread (i.e., filling is thread-safe)

CPU Thread

CPU Thread

CPU Thread

CPU Thread

buffer

buffer

buffer

buffer

mjb – August 13, 2020

10

Computer Graphics

Vulkan Graphics Pipelines

• In OpenGL, your graphics “pipeline state” is whatever combination you most recently set: color,
transformations, textures, shaders, etc.

• Changing the state is very expensive

• Vulkan forces you to set all your state at once into a “pipeline state object” (PSO) and then
invoke the entire PSO whenever you want to use that state combination

• Think of pipeline state as being immutable.

• Potentially, you could have thousands of these pre-prepared states – if there are N things to
set, there would be N! possible combinations.

• This is a good time to talk about how game companies view Vulkan…

mjb – August 13, 2020

11

Computer Graphics

VkGraphicsPipelineCreateInfo

Shader stages
VertexInput State

InputAssembly State
Tesselation State

Viewport State
Rasterization State
MultiSample State
DepthStencil State
ColorBlend State
Dynamic State
Pipeline layout
RenderPass

basePipelineHandle
basePipelineIndex

VkPipelineShaderStageCreateInfo

VkPipelineVertexInputStateCreateInfo

VkVertexInputBindingDescription

VkViewportStateCreateInfo Viewport
x, y, w, h,
minDepth,
maxDepth

offset
extent

ScissorVkPipelineRasterizationStateCreateInfo

cullMode
polygonMode

frontFace
lineWidth

VkSpecializationInfo

which stage (VERTEX, etc.)

VkShaderModule

VkPipelineInputAssemblyStateCreateInfo

Topology

VkVertexInputAttributeDescription

binding
stride

inputRate location
binding
format
offset

VkPipelineDepthStencilStateCreateInfo

VkPipelineColorBlendStateCreateInfo
depthTestEnable
depthWriteEnable
depthCompareOp
stencilTestEnable

stencilOpStateFront
stencilOpStateBack

blendEnable
srcColorBlendFactor
dstColorBlendFactor

colorBlendOp
srcAlphaBlendFactor
dstAlphaBlendFactor

alphaBlendOp
colorWriteMask

VkPipelineColorBlendAttachmentState

Vulkan: Creating a Pipeline

VkPipelineDynamicStateCreateInfo

vkCreateGraphicsPipeline()

Array naming the states that can be set dynamically

mjb – August 13, 2020

12

Computer Graphics

Vulkan GPU Memory

• Your application allocates GPU memory for the objects it needs

• You map memory to the CPU address space for access

• Your application is responsible for making sure what you put into that memory is
actually in the right format, is the right size, etc.

mjb – August 13, 2020

13

Computer Graphics

Vulkan Render Passes

• Drawing is done inside a render pass

• Each render pass contains what framebuffer attachments to use

• Each render pass is told what to do when it begins and ends

mjb – August 13, 2020

14

Computer Graphics

Vulkan Synchronization

• Synchronization is the responsibility of the application

• Events can be set, polled, and waited for (much like OpenCL)

• Vulkan does not ever lock – that’s the application’s job

• Threads can concurrently read from the same object

• Threads can concurrently write to different objects

mjb – August 13, 2020

15

Computer Graphics

Vulkan Shaders
• GLSL is the same as before … almost

• For places it’s not, an implied
#define VULKAN 100

is automatically supplied by the compiler

• You pre-compile your shaders with an external compiler

• Your shaders get turned into an intermediate form known as SPIR-V

• SPIR-V gets turned into fully-compiled code at runtime

• The SPIR-V spec has been public for months –new shader languages are
surely being developed

• OpenCL and OpenGL will be moving to SPIR-V as well

External
GLSL

Compiler
GLSL Source SPIR-V Vendor-specific

code
Compiler in

driver

1. Software vendors don’t need to ship their shader source
2. Software can launch faster because half of the compilation has already taken place
3. This guarantees a common front-end syntax
4. This allows for other language front-ends

Advantages:

mjb – August 13, 2020

16

Computer Graphics

So What Do We All Do Now?

• I don’t see Vulkan replacing OpenGL ever

• However, I wonder if Khronos will become less and less excited about
adding new extensions to OpenGL. I see no evidence of this right now.

• And, I also wonder if vendors will become less and less excited about
improving OpenGL drivers. I see no evidence of this right now.

• I see the OSU Vulkan class as always being a one-term standalone
course, not part of another OpenGL-based course.

mjb – August 13, 2020

17

Computer Graphics

Application

So What Do We All Do Now?

This is what I think the model of the immediate future is:

Application

Engine / 3rd Party Application

You (maybe)

xkcd.com

Application

You (definitely!) You (definitely!)

You can learn more at: http://cs.oregonstate.edu/~mjb/vulkan

