
mjb – February 1, 2022
Computer Graphics

1

VulkanRayTracing.pptx

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

Vulkan Ray Tracing – 5 New Shader Types!

mjb – February 1, 2022
Computer Graphics

2Analog Ray Tracing Example

mjb – February 1, 2022
Computer Graphics

3Digital Ray Tracing Examples

Blender

IronCad

mjb – February 1, 2022
Computer Graphics

4The Rasterization Shader Pipeline Doesn’t Apply to Ray Tracing

= Fixed Function

= Programmable

mjb – February 1, 2022
Computer Graphics

5The Ray-trace Pipeline Involves Five New Shader Types

Traversing the
Acceleration Structures

Intersection
Shader (rint)

Any Hit
Shader (rahit)

Closest Hit
Shader (rchit)

Ray Generation
Shader (rgen)

• A Ray Generation Shader runs on a 2D grid of threads. It begins the entire ray-tracing operation.

• An Intersection Shader implements ray-primitive intersections.

• An Any Hit Shader is called when the Intersection Shader finds a hit.

• The Closest Hit Shader is called with the information about the hit that happened closest to the
viewer. Typically lighting is done here, or firing off new rays to handle reflection and refraction.

• A Miss Shader is called when no intersections are found for a given ray. Typically it just sets its
pixel color to the background color.

Miss Shader
(rmiss)

Any hits found for this ray?

YesNo

trace()

Note: none of this lives in the graphics hardware pipeline.
This is all built on top of the compute functionality.

mjb – February 1, 2022
Computer Graphics

6The Ray Intersection Process for a Sphere

1. Sphere equation: (x-xc) 2 + (y-yc) 2 + (z-zc) 2 = R2

2. Ray equation: (x,y,z) = (x0,y0,z0) + t*(dx,dy,dz)

Plugging (x,y,z) from the second equation into the first equation and multiplying-
through and simplifying gives:

At2 + Bt + C = 0
Solve for t1, t2

A. If both t1 and t2 are complex, then the ray missed the sphere.
B. If t1 == t2, then the ray brushed the sphere at a tangent point.
C. If both t1 and t2 are real and different, then the ray entered and exited the

sphere.

In Vulkan terms:
gl_WorldRayOrigin = (x0,y0,z0)
gl_Hit = t
gl_WorldRayDirection = (dx,dy,dz)

A

B

C

mjb – February 1, 2022
Computer Graphics

7The Ray Intersection Process for a Cube

1. Plane equation: Ax + By + Cz + D = 0

2. Ray equation: (x,y,z) = (x0,y0,z0) + t*(dx,dy,dz)

Plugging (x,y,z) from the second equation into the first equation and multiplying-
through and simplifying gives:

At + B = 0
Solve for t

A cube is actually the intersection of 6 half-space
planes (just 4 are shown here). Each of these
will produce its own t intersection value. Treat them
as pairs: (tx1,tx2) , (ty1,ty2) , (tz1,tz2)

The ultimate entry and exit values are:
tmin = max(min(tx1, tx2), min(ty1, ty2), min(tz1, tz2))
tmax = min(max(tx1, tx2), max(ty1, ty2), max(tz1, tz2))

This works for all
convex solids

mjb – February 1, 2022
Computer Graphics

8In a Raytracing, each ray typically hits a lot of Things

mjb – February 1, 2022
Computer Graphics

9Acceleration Structures
• Bottom-level Acceleration Structure (BLAS) holds the vertex data and is built from vertex

and index VkBuffers

• The BLAS can also hold transformations, but it looks like usually the BLAS holds vertices
in the original Model Coordinates.

• Top-level Acceleration Structure (TLAS) holds a pointer to elements of the BLAS and a
transformation.

• The BLAS is used as a Model Coordinate bounding box.

• The TLAS is used as a World Coordinate bounding box.

• A TLAS can instance multiple BLAS’s.

Transform and
shading information

Transform and
shading information

Transform and
shading information

Transform and
shading information

Top Level Acceleration Structure

Bottom Level
Acceleration Structure

Bottom Level
Acceleration Structure

Bottom Level
Acceleration Structure

mjb – February 1, 2022
Computer Graphics

10Creating Bottom Level Acceleration Structures

vkCreateAccelerationStructure BottomLevelAccelerationStructure;

VkAccelerationStructureInfo vasi;
vasi.sType = VK_ACCELERATION_STRUCTURE_TYPE_BOTTOM_LEVEL;
vasi.flags = 0;
vasi.pNext = nullptr;
vasi.instanceCount = 0;
vasi.geometryCount = << number of vertex buffers >>
vasi.pGeometries = << vertex buffer pointers >>

VkAccelerationStructureCreateInfo vasci;
vasci.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO;
vasci.pNext = nullptr;
vasci.info = &vasi;
vasci.compactedSize = 0;

result = vkCreateAccelerationStructure(LogicalDevice, IN &vasci, PALLOCATOR, OUT &BottomLevelAcceleraionrStructure);

mjb – February 1, 2022
Computer Graphics

11Creating Top Level Acceleration Structures

vkCreateAccelerationStructure TopLevelAccelerationStructure;

VkAccelerationStructureInfo vasi;
vasi.sType = VK_ACCELERATION_STRUCTURE_TYPE_TOP_LEVEL;
vasi.flags = 0;
vasi.pNext = nullptr;
vasi.instanceCount = << number of bottom level acceleration structure instances >>;
vasi.geometryCount = 0;
vasi.pGeometries = VK_NULL_HANDLE;

VkAccelerationStructureCreateInfo vasci;
vasci.sType = VK_STRUCTURE_TYPE_ACCELERATION_STRUCTURE_CREATE_INFO;
vasci.pNext = nullptr;
vasci.info = &vasi;
vasci.compactedSize = 0;

result = vkCreateAccelerationStructure(LogicalDevice, &vasci, PALLOCATOR, &TopLevelAcceleraionrStructure);

mjb – February 1, 2022
Computer Graphics

12Ray Generation Shader

layout(location = 1) rayPayload myPayLoad
{

vec4 color;
};

void
main()
{

trace(topLevel, …, 1);
imageStore(framebuffer, gl_GlobalInvocationID.xy, color);

}

A “payload” is information that keeps getting passed
through the process. Different stages can add to it. It
is finally consumed at the very end, in this case by
writing color into the pixel being worked on.

Gets all of the rays going and writes the final color to the pixel

mjb – February 1, 2022
Computer Graphics

13A New Built-in Function

void trace
(

accelerationStructure topLevel,
uint rayFlags,
uint cullMask,
uint sbtRecordOffset,
uint sbtRecordStride,
uint missIndex,
vec3 origin,
float tmin,
vec3 direction,
float tmax,
int payload

);

In Vulkan terms:
gl_WorldRayOrigin = (x0,y0,z0)
gl_Hit = t
gl_WorldRayDirection = (dx,dy,dz)

mjb – February 1, 2022
Computer Graphics

14Intersection Shader

hitAttribute vec3 attribs

void main()
{

SpherePrimitive sph = spheres[gl_PrimitiveID];
vec3 orig = gl_WorldRayOrigin;
vec3 dir = normalize(gl_WorldRayDirection);

. . .
float discr = b*b – 4.*a*c;
if(discr < 0.)

return;

float tmp = (-b - sqrt(discr)) / (2.*a);
if(gl_RayTmin < tmp && tmp < gl_RayTmax)
{

vec3 p = orig + tmp * dir;
attribs = p;
reportIntersection(tmp, 0);
return;

}
tmp = (-b + sqrt(discr)) / (2.*a);
if(gl_RayTmin < tmp && tmp < gl_RayTmax)
{

vec3 p = orig + tmp * dir;
attribs = p;
reportIntersection(tmp, 0);
return;

}
}

Intersect a ray with an arbitrary 3D object.
Passes data to the Any Hit shader.
There is a built-in ray-triangle Intersection Shader.

mjb – February 1, 2022
Computer Graphics

15Miss Shader

rayPayload myPayLoad
{

vec4 color;
};

void
main()
{

color = vec4(0., 0., 0., 1.);
}

Handle a ray that doesn’t hit any objects

mjb – February 1, 2022
Computer Graphics

16Any Hit Shader

layout(binding = 4, set = 0) buffer outputProperties
{

float outputValues[];
} outputData;

layout(location = 0) rayPayloadIn uint outputId;
layout(location = 1) rayPayloadIn uint hitCounter;
hitAttribute vec3 attribs;

void
main()
{

outputData.outputValues[outputId + hitCounter] = gl_PrimitiveID;
hitCounter = hitCounter + 1;

}

Handle a ray that hits anything.
Store information on each hit.
Can reject a hit.

mjb – February 1, 2022
Computer Graphics

17Closest Hit Shader

rayPayload myPayLoad
{

vec4 color;
};

void
main()
{

vec3 stp = gl_WorldRayOrigin + gl_Hit * gl_WorldRayDirection;
color = texture(MaterialUnit, stp); // material properties lookup

}

Handle the intersection closest to the viewer.
Collects data from the Any Hit shader.
Can spawn more rays.

In Vulkan terms:
gl_WorldRayOrigin = (x0,y0,z0)
gl_Hit = t
gl_WorldRayDirection = (dx,dy,dz)

mjb – February 1, 2022
Computer Graphics

18Other New Built-in Functions

void ignoreIntersection();

void terminateRay();

void reportIntersection(float hit, uint hitKind);

Loosely equivalent to “discard”

mjb – February 1, 2022
Computer Graphics

19Ray Trace Pipeline Data Structure

VkPipeline RaytracePipeline;
VkPipelineLayout PipelineLayout;

VkPipelineLayoutCreateInfo vplci;
vplci.sType = VK_STRUCTURE_TYPE_PIPELINE_LAYOUT_CREATE_INFO;
vplci.pNext = nullptr;
vplci.flags = 0;
vplci.setLayoutCount = 1;
vplci.pSetLayouts = &descriptorSetLayout;
vplci.pushConstantRangeCount = 0;
vplci.pPushConstantRanges = nullptr;

result = vkCreatePipelineLayout(LogicalDevice, IN &vplci, nullptr, OUT &PipelineLayout);

VkRayTracingPipelineCreateInfo vrtpci;
vrtpci.sType = VK_STRUCTURE_TYPE_RAY_TRACING_PIPELINE_CREATE_INFO;
vrtpci.pNext = nullptr;
vrtpci.flags = 0;
vrtpci.stageCount = << # of shader stages in the ray-trace pipeline >>
vrtpci.pStages = << what those shader stages are >>
vrtpci.groupCount = << # of shader groups >>
vrtpci.pGroups = << pointer to the groups (a group is a combination of shader programs >>
vrtpci.maxRecursionDepth = << how many recursion layers deep the ray tracing is allowed to go >>;
vrtpci.layout = PipelineLayout;
vrtpci.basePipelineHandle = VK_NULL_HANDLE;
vrtpci.basePipelineIndex = 0;

result = vkCreateRayTracingPipelines(LogicalDevice, PALLOCATOR, 1, IN &rvrtpci, nullptr, OUT &RaytracePipeline);

mjb – February 1, 2022
Computer Graphics

20The Trigger comes from the Command Buffer:
vlCmdBindPipeline() and vkCmdTraceRays()

vkCmdBindPipeline(CommandBuffer, VK_PIPELINE_BIND_POINT_RAYTRACING, RaytracePipeline);

vkCmdTraceRays(CommandBuffer.
raygenShaderBindingTableBuffer, raygenShaderBindingOffset,
missShaderBindingTableBuffer, missShaderBindingOffset, missShaderBindingStride,
hitShaderBindingTableBuffer, hitShaderBindingOffset, hitShaderBindingStride,
callableShaderBindingTableBuffer, callableShaderBindingOffset, callableShaderBindingStride
width, height, depth);,

mjb – February 1, 2022
Computer Graphics

21

https://www.youtube.com/watch?v=QL7sXc2iNJ8

Check This Out!

