

1

3

5

2

4

The Ray Intersection Process for a Sphere

1. Sphere equation: $\left(x-x_{c}\right)^{2}+\left(y-y_{c}\right)^{2}+\left(z-z_{c}\right)^{2}=R^{2}$
2. Ray equation: $(x, y, z)=\left(x_{0}, y_{0}, z_{0}\right)+t^{\star}(d x, d y, d z)$

Plugging (x, y, z) from the second equation into the first equation and multiplyingthrough and simplifying gives:
$A t^{2}+B t+C=0$
Solve for t_{1}, t_{2}
A. If both t_{1} and t_{2} are complex, then the ray missed the sphere
B. If $t_{1}==t_{2}$, then the ray brushed the sphere at a tangent point
B. If $t_{1}==t_{2}$, then the ray brushed the sphere at a tangent point.
C. If both t_{1} and t_{2} are real and different, then the ray entered and exited the sphere.

6

7

9

11

8

10

12

A New Built-in Function 13		
```void trace ( accelerationStructure uint uint uint uint uint vec3 float vec3 float int );```	topLevel, rayFlags, cullMask, sbtRecordOffset, sbtRecordStride, missIndex, origin, tmin, direction, tmax, payload	
```In Vulkan terms: gl_WorldRayOrigin \(=\left(x_{0}, y_{0}, z_{0}\right)\) gl_Hit = t gl_WorldRayDirection = (dx,dy,dz)```		
$\begin{gathered} \text { OregonState } \\ \text { University } \\ \text { Computer Graphics } \end{gathered}$		mp - Fentuary 1.2022

13

15

17

14

16

18

19

20

21

