

Transforming a Surface Normal

Before transformation: T = (P0 - P)

 $N \cdot T = 0$, or expressed in matrix notation:

$$\begin{cases} \{N_i\}^T & \{T_i\} = 0 \\ 1x3 & 3x1 \end{cases}$$

After transformation:

$$T' = (P_0' - P') = ([M]\{P_0\} - [M]\{P\}) = [M](\{P_0\} - \{P\}) = [M]\{T\}$$

N $^{\prime}\cdot T$ $^{\prime}$ = ~0~ , or, expressed in matrix notation:

$$\begin{bmatrix} \{N'\}^T & \{T'\} = 0 \\ 1x3 & 3x1 \end{bmatrix}$$

If [Q] is the matrix which needs to transform the normal, then:

 $(\begin{array}{cccc} [Q]\{N\} \end{array})^T & \{T\ '\} = 0 & \text{, then, substituting for } \{T'\} \text{:} \\ (3x3\ 3x1\)^T & 3x1 & \end{array}$

([Q]{N}) T [M] {T} = 0 , then, distributing the transpose:

 $\{N\}^{{ \mathrm{\scriptscriptstyle T} }}[Q]^{{ \mathrm{\scriptscriptstyle T} }}[M]\;\{T\}=0\;$, then, associating the 2 middle terms:

 $\{N\}^T$ ($[Q]^T[M]$) $\{T\}$ = 0 , then, remembering that $\{N\ \}^T$ $\{T\ \}$ = $\,0$:

 $[Q]^T[M] = [I]$, so that Q must equal:

 $Q = (\ [M]^{-1}\)^T$