

1

3

5

2

4

6

7

Another Reason to have Homogeneous Coordinates is to be able to represent Points at Infinity

This is useful to be able specify a parallel light source by placing the light source location at infinity
The point $(1,2,3,1)$ represents the 3D point $(1,2,3)$
The point $(1,2,3, .5)$ represents the 3D point $(2,4,6)$
The point $(1,2,3, .01)$ represents the point $(100,200,300)$
So, $(1,2,3,0)$ represents a point at infinity, but along the ray from the origin through $(1,2,3)$
Points-at-infinity are used for parallel light sources and some shadow algorithms

Oregon State
University Univesity
Computer Graphics

8

However, when Using Homogeneous Coordinates, You Sometimes 10 Just Need to be able to get a Vector Between Two Points

To get a vector between two homogeneous points, we subtract them:

$$
\begin{aligned}
& \left(x_{b}, y_{b}, z_{b}, w_{b}\right)-\left(x_{a}, y_{a}, z_{a}, w_{a}\right)=\frac{\left(x_{b}, y_{b}, z_{b}\right)}{w_{b}}-\frac{\left(x_{a}, y_{a}, z_{a}\right)}{w_{a}} \\
& =\frac{\left(w_{a} x_{b}, w_{a} y_{b}, w_{a} z_{b}\right)-\left(w_{b} x_{a}, w_{b} y_{a}, w_{b} z_{a}\right)}{w_{a} w_{b}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Fortunately, most of the time that we do this, we only want a unit vector in that } \\
& \text { direction, not the full vector. So, we can ignore the denominator, and just say: }
\end{aligned}
$$

$$
\hat{v}=\operatorname{normalize}\left(w_{a} x_{b}-w_{b} x_{a}, w_{a} y_{b}-w_{b} y_{a}, w_{a} z_{b}-w_{b} z_{a}\right) ;
$$

vec3

VectorBetween(vec4 a, vec4 b)
return normalize(vec3(a.w*b.x-b.w*a.x, a.w*b.y-b.w*a.y, a.w*b.z-b.w*a.z));

\}

$\}$ Oremstate
OresonState
However, to save space in the sample code, these notes will assume that $w=1$.
10

