// create a value of 0. or 1. from the value of x wrt edge:
float t = step(float edge, float x);

// create a value in the range 0. to 1. from the value of x wrt edge0 and edge1:
float t = smoothstep(float edge0, float edge1, float x);

// use the returned value from step() or smoothstep() to blend value0 to value1:
T out = mix(T value0, T value1, float t);
in float vX, vY;
in vec4 vColor;
in float vLightIntensity;

uniform float uA;
uniform float uP;
uniform float uTol;

const vec4 WHITE = vec4(1., 1., 1., 1.);

void main()
{
 float f = fract(uA*vX);
 float t = smoothstep(0.5-uP-uTol, 0.5-uP+uTol, f) - smoothstep(0.5+uP-uTol, 0.5+uP+uTol, f);
 gl_FragColor = mix(WHITE, vColor, t);
ge federate light i ntensity;
}

“SmoothPulse” in a Fragment Shader

Fun With One

Moral: There are many ways to turn \([0. - 1.]\) into \([0. - 1.]\)
Why Do These Two Curves Match So Closely?

The Taylor Series expansion of \(y = \sin^2 \left(\frac{\pi x}{2} \right) \) around \(x = 0.5 \) is:

\[
y = \left(\frac{1}{2} - \frac{\pi^2}{4} + \frac{\pi^4}{96} \right) + x \left(\frac{\pi^2}{2} - \frac{\pi^4}{16} \right) + x^2 \left(\frac{\pi^4}{2} - \frac{\pi^6}{8} \right) - x^3 \left(\frac{\pi^6}{12} \right)
\]

\[
= .038 - .37x + 3.88x^2 - 2.58x^3
\]

which is pretty close to: \(y = 3x^2 - 2x^3 \)

Cubic vs. Quintic

Both go from 0. to 1.
Both have initial and final slopes of 0.
The quintic has initial and final curvatures of 0.