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The Scenario:

You want to do bump-mapping.  You have a very specific and detailed set of 
surface normal vectors but don’t have an equation that describes them.  Yet you 
would still like to somehow “wrap” the normal vector field around the object so that 
you can perform good lighting everywhere.

The Next Step in Bump-Mapping

This is a job for Normal-Maps!
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What is Normal-Mapping?

Normal-Mapping is a modeling technique where, in addition 
to you specifying the color texture, you also create a texture 
image that contains all of the normal vectors on the object

Color Texture Normal-Map Texture

Color map and normal map provided by Michael Tichenor
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How Do You Store a Surface Normal Field in a Texture?

The three components of the normal vector (nx, ny, nz) are mapped 
into the three color components (red, green, blue) of the texture:

in the range -1. → 1. are placed into the texture’s                in the range 0. → 1.
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To convert the normal to a color:

To convert the color back to a normal:
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This Gets Us Better Lighting Behavior, While Still 
Maintaining the Advantages of Bump-Mapping

Ordinary Texture Normal-Mapping
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Small Specular Shininess

Large Specular Shininess

This Gets Us Better Lighting Behavior, While Still 
Maintaining the Advantages of Bump-Mapping
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#version 330 compatibility

out vec3 vSurfacePosition;
out vec3 vSurfaceNormal;
out vec3 vEyeVector;
out vec2 vST;

void
main( )
{

vSurfacePosition = (gl_ModelViewMatrix * gl_Vertex).xyz;
vSurfaceNormal = normalize( gl_NormalMatrix * gl_Normal );
vEyeVector = vec3( 0., 0., 0. ) – vSurfacePosition;

vST = gl_MultiTexCoord0.st;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

Vertex shader
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#version 330 compatibility

uniform float uKa;
uniform float uKd;
uniform float uKs;
uniform float uShininess;
uniform float uFreq;
uniform sampler2D Color_Map;
uniform sampler2D Normal_Map;

in vec3 vSurfacePosition;
in vec3 vSurfaceNormal; // not actually using this – just here if we need it
in vec3 vEyeVector;
in vec2 vST;

const vec3 LIGHTPOSITION = vec3( 0., 10., 0. );
const vec3 WHITE = vec3( 1., 1., 1. );

void 
main( )
{

vec3 P = vSurfacePosition;
vec3 E = normalize( vEyeVector );
vec3 N = normalize( gl_NormalMatrix * (2.*texture( Normal_Map, uFreq*vST ).xyz - vec3(1.,1.,1.) ) );
vec3 L = normalize( LIGHTPOSITION – P );

vec3 Ambient = uKa * texture( Color_Map, uFreq * vST ).rgb;
float Diffuse_Intensity = dot( N, L );
vec3 Diffuse = uKd * Diffuse_Intensity * texture( Color_Map, uFreq * vST ).rgb;
float Specular_Intensity = pow( max( dot( reflect( -L, N ), E ), 0. ), uShininess );
vec3 Specular = uKs * Specular_Intensity * WHITE;
gl_FragColor = vec4(Ambient+ Diffuse + Specular, 1. );

}

Fragment shader


