
12/29/2022

1

mjb – December 12, 2022

1

Computer Graphics

Normal-Mapping

normalmapping.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – December 12, 2022

2

Computer Graphics

The Scenario:

You want to do bump-mapping. You have a very specific and detailed set of
surface normal vectors but don’t have an equation that describes them. Yet you
would still like to somehow “wrap” the normal vector field around the object so that
you can perform good lighting everywhere.

The Next Step in Bump-Mapping

This is a job for Normal-Maps!

12/29/2022

2

mjb – December 12, 2022

3

Computer Graphics

What is Normal-Mapping?

Normal-Mapping is a modeling technique where, in addition
to you specifying the color texture, you also create a texture
image that contains all of the normal vectors on the object

Color Texture Normal-Map Texture

Color map and normal map provided by Michael Tichenor

mjb – December 12, 2022

4

Computer Graphics

How Do You Store a Surface Normal Field in a Texture?

The three components of the normal vector (nx, ny, nz) are mapped
into the three color components (red, green, blue) of the texture:

in the range -1. → 1. are placed into the texture’s in the range 0. → 1.
𝑛𝑥
𝑛𝑦
𝑛𝑧

𝑟𝑒𝑑
𝑔𝑟𝑒𝑒𝑛
𝑏𝑙𝑢𝑒

𝑟𝑒𝑑
𝑔𝑟𝑒𝑒𝑛
𝑏𝑙𝑢𝑒

=

௡௫
௡௬
௡௭

ା
ଵ.
ଵ.
ଵ.

ଶ.

𝑛𝑥
𝑛𝑦
𝑛𝑧

= 2.∗
𝑟𝑒𝑑
𝑔𝑟𝑒𝑒𝑛
𝑏𝑙𝑢𝑒

−
1.
1.
1.

To convert the normal to a color:

To convert the color back to a normal:

12/29/2022

3

mjb – December 12, 2022

5

Computer Graphics

This Gets Us Better Lighting Behavior, While Still
Maintaining the Advantages of Bump-Mapping

Ordinary Texture Normal-Mapping

mjb – December 12, 2022

6

Computer Graphics

Small Specular Shininess

Large Specular Shininess

This Gets Us Better Lighting Behavior, While Still
Maintaining the Advantages of Bump-Mapping

12/29/2022

4

mjb – December 12, 2022

7

Computer Graphics

#version 330 compatibility

out vec3 vSurfacePosition;
out vec3 vSurfaceNormal;
out vec3 vEyeVector;
out vec2 vST;

void
main()
{

vSurfacePosition = (gl_ModelViewMatrix * gl_Vertex).xyz;
vSurfaceNormal = normalize(gl_NormalMatrix * gl_Normal);
vEyeVector = vec3(0., 0., 0.) – vSurfacePosition;

vST = gl_MultiTexCoord0.st;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

Vertex shader

mjb – December 12, 2022

8

Computer Graphics

#version 330 compatibility

uniform float uKa;
uniform float uKd;
uniform float uKs;
uniform float uShininess;
uniform float uFreq;
uniform sampler2D Color_Map;
uniform sampler2D Normal_Map;

in vec3 vSurfacePosition;
in vec3 vSurfaceNormal; // not actually using this – just here if we need it
in vec3 vEyeVector;
in vec2 vST;

const vec3 LIGHTPOSITION = vec3(0., 10., 0.);
const vec3 WHITE = vec3(1., 1., 1.);

void
main()
{

vec3 P = vSurfacePosition;
vec3 E = normalize(vEyeVector);
vec3 N = normalize(gl_NormalMatrix * (2.*texture(Normal_Map, uFreq*vST).xyz - vec3(1.,1.,1.)));
vec3 L = normalize(LIGHTPOSITION – P);

vec3 Ambient = uKa * texture(Color_Map, uFreq * vST).rgb;
float Diffuse_Intensity = dot(N, L);
vec3 Diffuse = uKd * Diffuse_Intensity * texture(Color_Map, uFreq * vST).rgb;
float Specular_Intensity = pow(max(dot(reflect(-L, N), E), 0.), uShininess);
vec3 Specular = uKs * Specular_Intensity * WHITE;
gl_FragColor = vec4(Ambient+ Diffuse + Specular, 1.);

}

Fragment shader

