Normal-Mapping

The Scenario:

You want to do bump-mapping. You have a very specific and detailed set of surface normal vectors but don't have an equation that describes them. Yet you would still like to somehow "wrap" the normal vector field around the object so that you can perform good lighting everywhere.

This is a job for Normal-Maps!

Normal-Mapping is a modeling technique where, in addition to you specifying the color texture, you also create a texture image that contains all $\delta \mathrm{f}$ the normal vectors on the object

Normal-Map Texture

The three components of the normal vector (nx, ny, nz) are mapped into the three color components (red, green, blue) of the texture:
$\left\{\begin{array}{l}n x \\ n y \\ n z\end{array}\right\}$ in the range $-1 . \rightarrow 1$. are placed into the texture's $\left\{\begin{array}{c}\text { red } \\ \text { green } \\ \text { blue }\end{array}\right\}$ in the range $0 . \rightarrow 1$.

To convert the normal to a color:

$$
\left\{\begin{array}{c}
\text { red } \\
\text { green } \\
\text { blue }
\end{array}\right\}=\frac{\left\{\begin{array}{c}
n x \\
n y \\
n z
\end{array}\right\}+\left\{\begin{array}{c}
1 . \\
1 .
\end{array}\right\}}{2 .}
$$

To convert the color back to a normal:

$$
\left\{\begin{array}{c}
n x \\
n y \\
n z
\end{array}\right\}=2 . *\left\{\begin{array}{c}
\text { red } \\
\text { green } \\
\text { blue }
\end{array}\right\}-\left\{\begin{array}{l}
1 . \\
1 . \\
1 .
\end{array}\right\}
$$


```
Vertex shader
#version 330 compatibility
out vec3 vSurfacePosition;
out vec3 vSurfaceNormal;
out vec3 vEyeVector;
out vec2 vST;
void
main()
{
    vSurfacePosition = (gl_ModelViewMatrix * gl_Vertex).xyz;
    vSurfaceNormal = normalize( gl_NormalMatrix * gl_Normal );
    vEyeVector = vec3( 0., 0., 0. ) - vSurfacePosition;
    vST = gl_MultiTexCoord0.st;
    gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}
```


