
Richer Worlds for Next Gen 
Games: Data Amplification 

Techniques Survey

Natalya Tatarchuk
3D Application Research Group

ATI Research, Inc.



Overview

• Defining the problem and 
motivation 

• Data Amplification
• Procedural data generation
• Geometry amplification
• Data streaming
• Data simplification
• Conclusion



Overview

• Defining the problem and 
motivation 

• Data Amplification
• Procedural data generation
• Geometry amplification
• Data streaming
• Data simplification
• Conclusion



Games and Current 
Hardware

• Games currently are CPU-limited
– Tuned until they are not GPU-limited
– CPU performance increases have 

slowed down (clock speed hit brick 
walls)

– Multicore is used in limited ways



Trends in Games Today
• Market demands larger, more complex 

game worlds
– Details, details, details

• Existing games already see increase in 
game data
– Data storage progression: Floppies → CDs 
→ DVDs

– HALO2.0 - 4.2GB 
– HD-DVD/Blueray → 20GB

[David Blythe, MS Meltdown 2005]



Motivation
• GPU performance increased tremendously 

over the years
– Parallel architecture allows consumption of ever 

increasing amounts of data and fast processing
– Major architectural changes happen roughly every 2 

years
– 2x speed increase also every 2 years
– Current games tend to be 

• Arithmetic limited (shader limited)
• Memory limited

• GPUs can consume ever increasing amounts 
of data, producing high fidelity images
– GPU-based geometry generation is on the horizon
– Next gen consoles



Why Not Just Author A Ton of 
Assets?

• Rising development cost
– Content creation is the bottleneck

• $10M content budget
– Art Pipeline is not scaling 

• Cost of authoring these datasets is increasing 
– skyrocketing game development costs

• Mass storage (Hard Drive and DVD) and 
volatile storage (RAM) are slow and small 
compared to the ability of the GPU to consume 
data

• Amplify the data
– Get the most out of what we build
– Get the most out of what we have loaded in memory 

at any given time



Overview

• Defining the problem and 
motivation 

• Data Amplification
• Procedural data generation
• Geometry amplification
• Data streaming
• Data simplification
• Conclusion



Database Amplification
• Alvy Ray Smith coined this term in his 1984 

SIGGRAPH Paper Plants, Fractals and Formal 
Languages

• The idea is to exploit 
computational resources 
to generate extreme 
complexity from concise 
descriptions

• Two axes of data amplification

Synthesis

Reuse



Data Amplification
• Database amplification – Create complex 

images from small datasets
• If you can generate it, an artist doesn’t have to 

build it
– Consoles and PCs have limited memory but monstrous 

GPU power
– Network bandwidth is limited.  Would be nice to “grow”

data from seeds sent across the wire.  Games could use 
this for foliage placement

– Has LOD opportunities built right in

• Emergence – Complex appearance from 
components with simple rules



Data Amplification 
Techniques Survey

• Provide you with ideas on how to 
generate your data

• How to create large amounts of data
– Procedural data generation ideas

• So you’ve generated a ton of data, now 
what? 
– Geometry instancing
– LOD / data streaming
– Data simplification



Overview

• Defining the problem and 
motivation 

• Data Amplification
• Procedural data generation
• Geometry amplification
• Data streaming
• Data simplification
• Conclusion



Procedural Data Generation

• Demoscene
• Textures

– Compositing signals and noise
– Hybrid textures
– Flow-based video synthesis

• Plants
• Geometry synthesis

– Particle systems
– Ocean water



Procedural Data Generation

• Demoscene
• Textures

– Compositing signals and noise
– Fluid dynamics with Navier-Stokes 

equations
• Geometry synthesis

– Particle systems
– Ocean water



Procedural Environments

• 2D games have done this for years

• The demoscene does a ton of this

• Some games are now extending to 
3D:
– Author time
– Run time



Demoscene
• To fit into 64kb or 96kb, 

the demoscene guys are 
doing a lot of procedural 
generation

• The 96kb game winner at 
Breakpoint 2004 (.kkrieger
by .theprodukkt) uses a lot 
of procedural generation 
and they have even posted 
their tools online:      

www.theprodukkt.com

.kkrieger by .theprodukkt.kkrieger by .theprodukkt

.kkrieger by .theprodukkt.kkrieger by .theprodukkt



Demo

.kkrieger by .theprodukkt



Procedural Textures
• Combine signals at 

different frequencies to 
make more stuff

• Examples
– Clouds
– Hybrid procedural and 

authored approaches
– Wang tiles
– Flow-based synthesis
– Fourier-domain water 

synthesis

From [Dube05]



An Image Synthesizer

• [Perlin85]
• Uses noise to synthesize 

a variety of natural 
phenomena

• This same paper also 
introduces the ideas of 
volume noise and high 
level language pixel 
shaders



Synthesize New Data From 
Video

• Real footage of flowing media (water, 
fire, clouds) can rarely be matched by 
average synthesized material

• Use existing footage to generate new, 
desired sequences to fit your game 
purpose

• Key idea: approximate the video of 
natural phenomena by continuous 
motion of particles along well-defined 
motion lines



Flow-Based Video Synthesis

• Introduced in “Flow-based Video Synthesis and 
Editing”, K. S. Bhat et al, Siggraph 2004

• Noted that natural phenomena such as 
waterfalls and streams have time-varying 
appearance but roughly stationary temporal 
dynamics
– Example: velocity at a single fixed point on a 

waterfall is roughly constant over time
• Describe the phenomena in terms of particles 

moving through flow lines
– Start lifetime when they enter the image
– Exit when they become invisible or leave the image



Modeling Phenomena 
Through Particle Motion

• Each particle has associated texture (a patch 
of pixels)
– Changes as the particle moves along the flow line!

• User defines a set of flow lines in the video
• The system extracts the particles and their 

corresponding textures based on the given flow 
line set
– Determines blending (“feathering”) weights

• When the particle positions along the flow lines 
in each new image is determined, blend the 
particle textures to produce the rendered 
results



Example: Waterfall

1. Input video 2. Define flow lines

3. Extract particles for each flow line:



Synthesize New Video 
Sequences

Insert new flow lines
New synthesized video



Fluid Dynamics With 
Navier-Stokes Equations

• It is now possible to do 2D fluid simulations on 
GPUs
– “Explicit Early-Z Culling for Efficient 

Fluid Flow Simulation and Rendering”, 
ATI Technical Report, P. V. Sander, N. 
Tatarchuk, J. L. Mitchell

– “Fast Fluid Dynamics Simulation on the
GPU”, GPU Gems, M. Harris, UNC

• Can be useful for generating decorative 
smoke wisps 

• On next gen consoles, can be used for 
gameplay / interaction

• Perform full physics computation directly on 
the GPU



Demo

Fluid Flow



Fluid Flow

• We can use Early-Z to cull computation in 
some cases, since the z buffer is not 
needed for traditional hidden surface 
removal

• Fluid flow can be sparse, making it a 
candidate for Early-Z optimizations

• Can reduce computation in areas of low 
pressure to achieve faster / better 
simulation results



Flow Density and Pressure
Density Pressure



Iterations Vary With Pressure

• Assume that low-pressure regions need fewer 
computation iterations for convergence

• Set z buffer according to pressure buffer
• Draw 30 full screen quads in projection step

– Vary the z from quad to quad so that the number of 
iterations varies with pressure

• Early-Z complete culls pixel shader instances
• Up to 3x performance improvement



Qualitative Improvement

• You can alternatively look at this as a 
qualitative improvement

• Better simulation quality for a given frame rate

5 - 50 Iterations10 Iterations Everywhere



Integration into 
Scene

• Obviously, this doesn’t have 
to be physically accurate, 
just plausible

• Once you have the 
implementation and the 
GPU cycles to burn, you 
can drop this sort of thing in 
anywhere



Demo

The Crowd demo



Overview

• Defining the problem and 
motivation 

• Data Amplification
• Procedural data generation
• Geometry amplification
• Data streaming
• Data simplification
• Conclusion



Geometry Amplification

• It’s easy to play games with textures 
using pixel shaders, but how do we 
amplify our geometry?

Synthesis: Make more!
Instancing: Reuse the data in 
interesting ways which hide the 
replication



• Textures are easy to generate using pixel 
shaders as image processing kernels, but we 
want to process geometry too

• For certain 1:1 or many:1 operations, GPU-
based geometry processing and generation is 
real
– Really it has been around a while, but the APIs are in 

the way

• Want to synthesize data on demand rather 
than store a lot of it
– This includes geometry!

Geometry Synthesis



• Storing lots of precomputed water 
animation takes up lots of memory
– Would be nice if it could be generated on 

demand
• Computing water animation via realistic 

simulation in real-time is expensive
– It just has to be plausible

• Simply scrolling noise can look OK, but 
we want to do better
– We’ve done scrolling noise in the past, but 

we can do better

On-demand Synthesis of 
Water



Two Classes of Approach

• Spatial domain
– Compute superposition of a finite set of 

waveforms directly
– Can be sinusoids or trochoids or something 

more arbitrary
• Fourier domain

– Synthesize and animate spectrum of ocean 
water

– Take IFFT to get height and normal maps



• [Mastin87]
• Transformed white noise to the Fourier domain 

and then filtered it using a spectrum which 
resembles ocean water
– Used the Pierson-Moskowitz spectrum 

which was derived from real ocean wave 
measurements

– Relates wind speed to spectrum of sea
• Inverse FFT of the filtered result produces a 

tileable height map which resembles ocean 
waves

• Can portray wave motion by manipulating the 
phase

Fourier Synthesis of Ocean 
Scenes



Frequency Domain Spatial Domain

IFFT*

FFT

White 
Noise

Water 
Height

Pierson-
Moskowitz 
Spectrum

Fourier Synthesis of Ocean 
Scenes: The Process



Simulating Ocean Water
• [Tessendorf99]
• Did water for Waterworld, Titanic

and many others
• Works with sums of sinusoids but 

starts in Fourier domain
• Can evaluate at any time t

without having to evaluate other 
times

• Uses the Phillips Spectrum and 
describes how to tune it to get 
desired looks

– Roughness of the sea as a function 
of wind speed

– Directional dependence to simulate 
waves approaching shore



• [Jensen01]
• Adopted many techniques from 

Tessendorf, all in real time
• Used low frequencies to displace 

geometry and high frequencies in a 
normal map

• First attempt at Fourier synthesis of 
ocean water in real time, but IFFT 
was done on the CPU

• Also played with all sorts of other 
things like foam, spray, caustics 
and godrays

Deep-Water Animation and 
Rendering



• A couple of different GPU-based FFT 
implementations have been  developed in the 
last few years
– Evan Hart developed a GPU-based FFT 

implementation of Cooley and Tukey’s “Decimation in 
Time” algorithm ([Cooley65])

• Published in the image processing chapter in ShaderX2

[Mitchell03]
– [Moreland03] also published a paper on doing the 

FFT on a GPU
• Multipass algorithm, but performs efficiently on 

the GPU
• Allows us to move the entire computation onto 

the GPU

FFT on the GPU



Migrate It All to The GPU

1. Load initial frequency data to static 
textures

2. For each frame
a. Generate Fourier spectrum at time t
b. Do IFFT to transform to spatial domain height 

field
c. Filter height field to generate normal map
d. Cast height field to vertex buffer to use as 

displacement stream
e. Render mesh tiles using displacement stream 

and normal map to shade



Synthesized Water
• Apply synthesized height 

field to vertices and 
displace vertically

• Filter to create a normal 
map for shading

• “Real-Time Synthesis and 
Rendering of Ocean Water”, 
Jason L. Mitchell, ATI 
Technical Report, 2005



Render-To-Vertex Buffer
• Render vertex data into data buffer as a texture
• This buffer is directly bound as a vertex buffer 

afterwards 
• Then go on using it as regular vertex data
• Dynamic generation of geometry and data!

• Soon to be released, access to the beta driver 
through your ATI contact



Additional Waveforms
• Easy to composite wake, 

eddies, simulation etc
• Precomputed waveforms or 

real-time simulation like the 
Navier-Stokes simulation 
demonstrated earlier

• Then filter to get normals for 
shading

Height + wakeHeight + wake NormalsNormals

Resulting renderingResulting rendering



Single-band approach

0
~h *

0
~h

ω̂

Frequency Domain Spatial Domain

time ( )tkh ,~
r ( )txh ,r Normal 

Map
IFFT

Displacements

Normals

Static 
Textures



Dual-band approach
0
~h *

0
~h

ω̂

Frequency Domain Spatial Domain

time ( )tkh ,~ r ( )txh ,r Normal 
Map

0
~h *

0
~h

ω̂

time ( )tkh ,~ r ( )txh ,r Normal 
Map

IFFT

IFFT

Low
 Band

B
road band

Displacements

Normals



Interaction

• If the GPU does the amplification, what 
does this do to our interactions with the 
world, which are simulated on the CPU?
– Multi-resolution synthesis (low resolution on 

CPU for gross collision interaction & high 
resolution on GPU for rendering)



Particle Systems
• In [Kipfer04], the authors use the GPU to 

implement a particle engine they call 
Uberflow

• Particle-Particle and Particle-Scene 
collisions

• Can sort back to front
• Measure the following perf in frames per 

second:

0.41.474212010242

2831963205122

7391331556402562

CPU 
sorting, 

no 
collisions

Sorting, 
but no 

collisions

Particle-
Particle 

collisions

Collision
s with 
height 
field

No 
collisions



Instancing and Variation
• Want to use a single source 

model at multiple physical 
locations in an environment

• The best way to handle groups 
of similar things

– Foliage, crowds
• Ideally done with one API call 

and no data replication
– Direct3D has recently added an 

instancing capability
• Use shaders to generate 

uniqueness across instances 
with spatially varying parameters

Copyright 2001 PDI/DreamworksCopyright 2001 PDI/Dreamworks



• New API in Direct3D
– Store per-instance data in a separate data stream
– Draw multiple instances in one shot

• Example from Far Cry, for a representative forest 
scene:
– Approximately 24 kinds of vegetation
– 4 types of grass (45 to 120 polygons per instance)
– 12 types of bushes (100 to 224 polygons per instance)
– 8 types of trees (500 to 1600 polygons per instance)
– Instancing on some scenes is very efficient. Number of 

draw-calls (including other non-instanced objects) is 
reduced from 2500 to 430

Instancing in Practice



FarCry Geometry 
Instancing – Results

• Depending on the amount of 
vegetation, rendering speed 
increases up to 40% (when heavily 
draw call limited)

• Allows them to increase sprite 
distance ratio, a nice visual 
improvement with only a moderate 
rendering speed hit

Slides courtesy of Carsten Wenzel, CryTek, 
GDC 2005



Scene from FarCry drawn normallyScene from FarCry drawn normally
Slides courtesy of Carsten Wenzel, CryTek, 
GDC 2005



FarCry Batches visualized – Vegetation 
objects tinted the same way get 

submitted in one draw call!

FarCry Batches visualized – Vegetation 
objects tinted the same way get 

submitted in one draw call!
Slides courtesy of Carsten Wenzel, CryTek, 
GDC 2005



Another Example: Hundreds 
of Instanced Characters



Drawing A Crowd: The Goal

• Draw over a thousand animated 
characters on screen simultaneously 
– We draw ~1400
– With shadows (a special trick)

• Individualized look 
– Colors / textures / decals

• Efficient use of API – can’t simply have 
over a thousand draw calls!

• See “Drawing A Crowd” ShaderX3 
article by D. Gosselin et al for code 
samples and details



Drawing a Crowd: Optimizing 
Draw Calls

• Reduce the number of draw calls
– Several characters per draw call

• Pack a number of instances of character vertex 
data into a single vertex buffer
– Skinning is done on GPU: Pack multiple transforms 

into constant store for each draw calls
– Therefore we can draw several unique instances with 

its own unique animation in a single draw call!
• Limitation: constant store size

– Depends on the number of bones for skinning
– We use 20 → with some tweaks → draw a group of 

4 characters with one draw call
• 250-300 draw calls for a crowd of 1400 

characters!



Unique Seeds for Instanced 
Shading

• Simply instancing characters is not enough –
we don’t want a clone army
– The characters should have individualized look

• We determine the ID of the character drawn in 
a given draw call using the number of bones 
per character

• Vertex shader selects from a set of random 
numbers based on character ID

• In the pixel shader, we look up into a color tint 
texture with the given random number and use 
this color to tint each character
– Also can apply randomized decals



Example: Unique Seeds for 
Individual Look

Character tint texture

Random IDs assigned 
to each character for 
further tinting



Demo

The Crowd Demo



0

1

n

…
• Useful for providing unique look 

to instanced objects
– Index into an array of textures 

based upon some “state” stored 
with each instance (like color 
seeds on previous slide)

– Same “state” can be used to drive 
flow control as well

– Like being able to change texture 
handles mid draw call

• DirectX 10 feature
• XBox 360 feature

Texture Arrays for 
Instancing



Overview

• Defining the problem and 
motivation 

• Data Amplification
• Procedural data generation
• Geometry amplification
• Data streaming
• Data simplification
• Conclusion



You’ve Got Lots of Data.. 
Now What?

• Once you have huge datasets (Gigs and 
gigs of art assets) there is the problem 
of getting it to the GPU for rendering

• Data streaming is one solution
– Various custom approaches exist
– Many utilize LOD

• Ideally, we want a smooth LOD with 
data streaming 
– Transparent to the player



Use Progressive Buffers!

• A preprocessing method and a 
rendering system for geometry and 
texture 

• View-dependent dynamic LOD
• Suitable for variety of hardware
• Easily handles gigabytes of vertex 

data with textures



How Do Progressive Buffers 
Help You?

• New rendering method geomorphing the 
geometry using per-vertex weights (in the 
vertex shader)
– Prevents LOD pops and boundary cracks
– Uses static GPU-friendly vertex and index buffers

• Hierarchical method to render far-from-the-
viewer geometry
– Reduces the number of draw calls 

• Scheduling algorithm to load the data as 
required on demand from disk into video 
memory
– Load levels while players are finishing the current 

one



Progressive Buffers

• “Progressive Buffers: View-dependent 
Geometry and Texture LOD Rendering”, 
Pedro V. Sander, Jason L. Mitchell, 
Symposium on Geometry Processing, 2005

• A data structure and system for 
rendering of a large polygonal model:
– Out-of-core
– Texture / normal-mapping support
– Smooth transitions between levels of detail 

(no popping)

Slide2.avi



Demo

Out-of-Core Rendering with 
Progressive Buffers



• Combination of these buffers for all 
LOD is the progressive  bufferVertex-aligned with the fine buffer such 

that each vertex corresponds to the 
“parent” vertex of the fine buffer in the 
next coarser LOD

The Progressive Buffer

• Each static buffer will 
contain an index buffer and 
two vertex buffers

PBi

9
8
7
6
5
4
3
2
1

fine
6
4
1
6
5
4
3
2
1

coarse

• Represent the mesh’s LODs with several static 
buffers

– Fine vertex buffer

– Coarse vertex buffer

Representing the vertices in the 
current LOD

(Note: requires vertex duplication)



The Progressive Buffer

Vertex parents for LOD = 4: vs,vt,vv vu

vs vt

vs vu

vu

vu

vu vv

LO
D

=4
LO

D
=3

   
…

…

…



Progressive Buffer 
Construction

Preprocess (mostly based on previous methods):
• Split model into clusters 
• Parametrize clusters and sample textures
• Create multiple (e.g., five) static vertex/index buffers for 

different LODs, each having ¼ of the vertices of its 
parent
– Simplify each chart at time from one LOD down to the next, 

and simplify the boundary vertices to its neighbor
– Simplify respecting boundary constraints and preventing 

texture flips
[Cohen 98, Sander 01]

• Perform vertex cache optimization for each of these 
buffers [DX9; Hoppe 99]



Rendering the Progressive 
Buffer

Runtime:
• A static buffer is streamed to 

vertex shader 
(LOD determined based on cluster’s 
center distance to camera)

• Vertex shader smoothly 
blends position, normal and 
UVs. 
(blending weight based on vertex
distance to camera)

PBi

9
8
7
6
5
4
3
2
1

6
4
1
6
5
4
3
2
1

fine coarse



Continuous LOD Control
• Texture-mapping

Allows for lower geometric level of detail without 
loss in quality (e.g., flat regions can be textured).

• Geomorphing
A lower number of rendered triangles causes 
undesired popping when changing level of detail. 
Geomorphing provides a smoother transition.

• Summary:
– Complex models
– Wide range of graphics hardware
– No need for tiny pixel-sized triangles



• Decrease level of 
detail:
– Geomorph

PBi orange yellow
– Switch buffer

PBi PBi-1

– Geomorph
PBi-1 yellow green

• Increase level of detail by reversing the 
order of operations

Buffer Geomorphing

PBi
PBi-1

9
8
7
6
5
4
3
2
1

fine
6
4
1
6
5
4
3
2
1

coarse

6
5
4
3
2
1

fine
3
2
2
3
2
1

coarse

Slide10.avi



vertex LOD

PBn PBn-1 PBn-2

distance to camera

geomorph geomorph geomorph

k
2k

4k

e

s

r e r e r

LOD

LOD Transitions



LOD Bands and Weights

vertex LOD

PBn PBn-1 PBn-2

distance to camera

geomorph geomorph geomorph

k 2k 4k

e

s

r e r e r

ds ded



Texture LOD
• Analogous to vertex LOD
• Each LOD also has texture
• Each coarser LOD has ¼ of the # of vertices and ¼ of 

the # of texels of the previous LOD
• Essentially, we drop the highest mip level when 

coarsening, and add a mip level when refining
• Textures are blended just like vertices:

– Vertex geomorph weight passed down to pixel shader
– Pixel shader performs two fetches (one per LOD)
– Pixel shader blends resulting colors according to the 

interpolated weight

Slide14.aviSlide14.avi



Limitations of Data 
Structure

• Vertex buffer size is doubled 
(but only small subset of data resides in video memory)

• Clusters should be about the same size 
(a large cluster would limit minimum LOD band size)

• Larger number of draw calls than purely 
hierarchical algorithms
(cannot switch textures within same draw call;
coarse level hierarchy partly addresses this)

• Texture stretching due to straight boundaries



Automatic LOD Control

• Bounds:
– System memory
– Video memory
– Framerate (less stable)
– Maximum band size

• Values of k and s slowly adjusted accordingly 
to remain within the above bounds

vertex LOD

geomorph geomorph geomorph

k 2k 4k

e

s

r e r e r



Memory Management
• Separate thread loads data, and based 

on distance to viewer sets priorities as 
follows:

No

No

Yes

Yes

Video memory*

100MBYes3 (active)

Full datasetNo0 (not needed)

50MBYes1 (needed soon)

20MBYes2 (almost active)

Sample 
boundsSystem memoryPriority

*Priority (with LRU as tie-breaker) used for determining what is loaded on video 
memory



Computing Continuous LOD

• We compute continuous LOD of each buffer.
• Taking the integer part, we get the static buffer, and 

assign it priority 3:

• If the continuous LOD is within a specified threshold of 
another static buffer’s LOD, we set that buffer’s priority 
accordingly:

0.75Video memory2evideo

1.00System memory1esystem

ExampleTargetPriorityThreshold



Instancing Example
1600 dragons, 240M polygons



Instancing Example



Overview

• Defining the problem and 
motivation 

• Data Amplification
• Procedural data generation
• Geometry amplification
• Data streaming
• Data simplification
• Conclusion



Objective
• We want to render very detailed surfaces 
• Don’t want to pay the price of millions of 

triangles
– Vertex transform cost
– Memory footprint

• Want to render those detailed surfaces 
accurately
– Preserve depth at all angles
– Dynamic lighting
– Self occlusion resulting in correct shadowing



Parallax Occlusion Mapping

• Per-pixel ray tracing at its core
• Correctly handles complicated viewing 

phenomena and surface details
– Displays motion parallax
– Renders complex geometric surfaces such as 

displaced text / sharp objects
– Uses occlusion mapping to determine visibility 

for surface features (resulting in correct self-
shadowing)

– Uses flexible lighting model



Contributions

• Increased precision of height field – ray 
intersections per-pixel

• Dynamic real-time lighting of surfaces with 
soft shadows due to self-occlusion under 
varying light conditions

• Directable level-of-detail control system with 
smooth transitions between levels

• Motion parallax simulation with perspective-
correct depth



Encoding Displacement 
Information

Tangent-space normal map Displacement values (the height map)

All computations are done in tangent space, and thus can 
be applied to arbitrary surfaces



Implementation: Per-
Vertex

• Compute the viewing direction, the 
light direction in tangent space

• May compute the parallax offset 
vector (as an optimization)
– Interpolated by the rasterizer



Implementation: Per-Pixel
• Ray-cast the view ray along the parallax offset 

vector 

• Light ray – height profile intersection for occlusion 
computation to determine the visibility coefficient

• Shading
– Using any attributes
– Any lighting model

• Ray – height field profile intersection as a texture 
offset
– Yields the correct displaced point visible from the 

given view angle



Adaptive Level-of-Detail 
System

• Compute the current mip map level

• For furthest LOD levels, render using 
normal mapping (threshold level)

• As the surface approaches the viewer, increase 
the sampling rate as a function of the current 
mip map level

• In transition region between the 
threshold LOD level, blend between the normal 
mapping and the full parallax occlusion 
mapping



Parallax Occlusion 
Mapping vs. Actual 

Geometry

An 1,100 polygon object rendered with 
parallax occlusion mapping (wireframe)

A 1.5 million polygon object 
rendered with diffuse lighting
(wireframe)



Parallax Occlusion 
Mapping vs. Actual 

Geometry
-1100 polygons with parallax occlusion       Frame Rate:

mapping (8 to 50 samples used)               - 255 fps on ATI  
- Memory: 79K vertex buffer                         Radeon hardware

6K index buffer - 235 fps with skinning
13Mb texture (3Dc) 
(2048 x 2048 maps)

_______________________________
Total: < 14 Mb

- 1,500,000 polygons with diffuse               Frame Rate:
lighting                                                    - 32 fps on ATI Radeon

- Memory: 31Mb vertex buffer                        hardware 
14Mb index buffer         

____________________________
Total: 45 Mb



Demo

Parallax Occlusion Mapping



Parallax Occlusion 
Mapping: Summary 

• Efficiently uses existing pixel pipelines for highly 
interactive rendering

• Powerful technique for rendering complex surface 
details in real time

• Produces excellent lighting results

• Has modest texture memory footprint
– Comparable to normal mapping

• Supports dynamic rendering of height fields and 
animated objects



Conclusion
• Data amplification can be done now!

– Current hardware is powerful enough
– Next gen consoles offer many new options

• Generate data on the file
– Procedural data amplification
– Geometry synthesis

• Use individualized geometry instancing to draw many 
objects 
– Crowds of characters
– Forests
– Herds of animals – you’ll come up with many examples!

• Data streaming can be made to work efficiently with 
GPUs
– Progressive buffers technique make it possible

• Simplify geometry and use other algorithms (like parallax 
occlusion mapping) to render complex scenes



Thank You

• Jason L. Mitchell, Valve
• Zoe Brawley, Relic Entertainment
• Pedro V. Sander, ATI Research
• Dan Roeger, Daniel Szecket, Abe 

Wiley and Eli Turner – our artists
• ATI 3D Applications Research 

Group and the demo team 



Questions?

• devrel@ati.com



References
• [Barrett04] Sean Barrett, “Hybrid Procedural Textures,” Game Developer 

Magazine, October 2004
• [Bhat04] Kiran S. Bhat, Steven M. Seitz, Jessica K. Hodgins and 

Pradeep K. Khosla, “Flow-based Video Synthesis and Editing,”
SIGGRAPH 2004.

• [Cohen03] Michael F. Cohen, Jonathan Shade, Stefan Hiller and Oliver 
Deussen, “Wang Tiles for Image and Texture Generation,” SIGGRAPH 
2003, July, 2003

• [Cooley65] James W. Cooley and John W. Tukey, “An Algorithm for the 
Machine Calculation of Complex Fourier Series.” Math. Comput. 19, 297-
301, 1965.

• [Dube05] Jean-François Dubé, “Realistic Cloud Rendering on Modern 
GPUs” in Game Programming Gems 5, Charles River Media 2005

• [Ebert03] David S. Ebert, F. Kenton Musgrave, Darwyn Peachey, Ken 
Perlin and Steven Worley, Texturing and Modeling: A Procedural 
Approach, Morgan Kaufmann 2003.

• [Jensen01] Lasse Staff Jensen and Robert Goliáš, “Deep-Water 
Animation and Rendering,” Game Developers Conference Europe, 2001. 
http://www.gamasutra.com/gdce/2001/jensen/jensen_01.htm



References (cont.)
• [Kipfer04] Peter Kipfer, Mark Segal and Rüdiger Westermann , 

“UberFlow: A GPU-Based Particle Engine,” Graphics Hardware 2004 
• [Mastin87] Gary A. Mastin, Peter A. Watterger, and John F. Mareda, 

“Fourier Synthesis of Ocean Scenes,” IEEE Computer Graphics and 
Applications, March 1987, p. 16-23.

• [Mitchell03] Jason L. Mitchell, Marwan Y. Ansari and Evan Hart, 
“Advanced Image Processing with DirectX 9 Pixel Shaders” in ShaderX
2 - Shader Tips and Tricks, Wolfgang Engel editor, Wordware, Sept. 
2003.

• [Moreland03] Kenneth Moreland and Edward Angel, “The FFT on a 
GPU,” SIGGRAPH/Eurographics Workshop on Graphics Hardware 
2003 Proceedings, pp. 112–119, July 2003.

• [Perlin85] Ken Perlin, “An Image Synthesizer,” SIGGRAPH 1985.
• [Tessendorf99] Jerry Tessendorf, “Simulating Ocean Water,”

Simulating Nature: Realistic and Interactive Techniques Course Notes, 
SIGGRAPH 1999


