
Deferred Shading

Shawn Hargreaves



Overview

• Don’t bother with any lighting while drawing scene 
geometry

• Render to a “fat” framebuffer format, using multiple 
rendertargets to store data such as the position and 
normal of each pixel

• Apply lighting as a 2D postprocess, using these 
buffers as input



Comparison: Single Pass Lighting
For each object:

Render mesh, applying all lights in one shader

• Good for scenes with small numbers of lights (eg. 
outdoor sunlight)

• Difficult to organize if there are many lights
• Easy to overflow shader length limitations



Comparison: Multipass Lighting
For each light:

For each object affected by the light:
framebuffer += object * light

• Worst case complexity is num_objects * num_lights
• Sorting by light or by object are mutually exclusive: 

hard to maintain good batching
• Ideally the scene should be split exactly along light 

boundaries, but getting this right for dynamic lights 
can be a lot of CPU work



Deferred Shading
For each object:

Render to multiple targets

For each light:
Apply light as a 2D postprocess

• Worst case complexity is num_objects + num_lights
• Perfect batching
• Many small lights are just as cheap as a few big ones



Multiple Render Targets

• Required outputs from the geometry rendering are:
– Position
– Normal
– Material parameters (diffuse color, emissive, specular 

amount, specular power, etc)

• This is not good if your lighting needs many input 
values! (spherical harmonics would be difficult)



Fat Framebuffers

• The obvious rendertarget layout goes something like:
– Position A32B32G32R32F
– Normal A16B16G16R16F
– Diffuse color A8R8G8B8
– Material parameters A8R8G8B8

• This adds up to 256 bits per pixel. At 1024x768, that 
is 24 meg, even without antialiasing!

• Also, current hardware doesn’t support mixing 
different bit depths for multiple rendertargets



Framebuffer Size Optimizations

• Store normals in A2R10G10B10 format
• Material attributes could be palettized, then looked up 

in shader constants or a texture
• No need to store position as a vector3:

– Each 2D screen pixel corresponds to a ray from the eyepoint
into the 3D world (think raytracing)

– You inherently know the 2D position of each screen pixel, 
and you know the camera settings

– So if you write out the distance along this ray, you can 
reconstruct the original worldspace position



My Framebuffer Choices

• 128 bits per pixel = 12 meg @ 1024x768:
– Depth R32F
– Normal + scattering A2R10G10B10
– Diffuse color + emissive A8R8G8B8
– Other material parameters A8R8G8B8

• My material parameters are specular intensity,
specular power, occlusion factor, and shadow 
amount. I store a 2-bit subsurface scattering control 
in the alpha channel of the normal buffer



Depth 
Buffer

Specular
Intensity / 
Power



Normal 
Buffer



Diffuse
Color
Buffer



Deferred 
Lighting 
Results



How Wasteful…

• One of my 32 bit buffers holds depth values
• But the hardware is already doing this for me!
• It would be nice if there was an efficient way to get 

access to the existing contents of the Z buffer
• Pretty please? ☺



Global Lights

• Things like sunlight and fog affect the entire scene
• Draw them as a fullscreen quad
• Position, normal, color, and material settings are read 

from texture inputs
• Lighting calculation is evaluated in the pixel shader
• Output goes to an intermediate lighting buffer



Local Lights

• These only affect part of the scene
• We only want to render to the affected pixels
• This requires projecting the light volume into

screenspace. The GPU is very good at that sort of 
thing…

• At author time, build a simple mesh that bounds the 
area affected by the light. At runtime, draw this in 3D 
space, running your lighting shader over each pixel 
that it covers



Convex Light Hulls

• The light bounding 
mesh will have two 
sides, but it is important 
that each pixel only gets 
lit once

• As long as the mesh is 
convex, backface 
culling can take care of 
this



Convex Light Hulls

• The light bounding 
mesh will have two 
sides, but it is important 
that each pixel only gets 
lit once

• As long as the mesh is 
convex, backface 
culling can take care of 
this



Convex Light Hulls #2

• If the camera is inside 
the light volume, draw 
backfaces



Convex Light Hulls #3

• If the light volume 
intersects the far clip 
plane, draw frontfaces

• If the light volume 
intersects both near and 
far clip planes, your 
light is too big!



Volume Optimization

• We only want to shade 
the area where the light 
volume intersects scene 
geometry

• There is no need to
shade where the 
volume is suspended in 
midair

• Or where it is buried 
beneath the ground



Stencil Light Volumes

• This is exactly the same problem as finding the 
intersection between scene geometry and an 
extruded shadow volume

• The standard stencil buffer solution applies
• But using stencil requires changing renderstate for 

each light, which prevents batching up multiple lights 
into a single draw call

• Using stencil may or may not be a performance win, 
depending on context



Light Volume Z Tests

• A simple Z test can get 
things half-right, without 
the overhead of using 
stencil

• When drawing light 
volume backfaces, use 
D3DCMP_GREATER to 
reject “floating in the air” 
portions of the light



Light Volume Z Tests #2

• If drawing frontfaces, use
D3DCMP_LESS to reject 
“buried underground” 
light regions

• Which is faster depends 
on the ratio of 
aboveground vs. 
underground pixels: use 
a heuristic to make a 
guess



Alpha Blending

• This is a big problem!
• You could simply not do any lighting on alpha 

blended things, and draw them after the deferred 
shading is complete. The emissive and occlusion 
material controls are useful for crossfading between 
lit and non-lit geometry

• The return of stippling?
• Depth peeling is the ultimate solution, but is 

prohibitively expensive at least for the time being



High Dynamic Range

• You can do deferred shading without HDR, but that 
wouldn’t be so much fun

• Render your scene to multiple 32 bit buffers, then use 
a 64 bit accumulation buffer during the lighting phase

• Unfortunately, current hardware doesn’t support 
additive blending into 64 bit rendertargets

• Workaround: use a pair of HDR buffers, and simulate 
alpha blending in the pixel shader



DIY Alpha Blending

• Initialize buffers A and B to the same contents
• Set buffer A as a shader input, while rendering to B, 

and roll your own blend at the end of the shader
• This only works as long as your geometry doesn’t 

overlap in screenspace
• When things do overlap, you have to copy all 

modified pixels from B back into A, to make sure the 
input and output buffers stay in sync

• This is slow, but not totally impractical as long as you 
sort your lights to minimize screenspace overlaps



HDR 
Results



Volumetric Depth Tests

• Neat side effect of having scene depth available as a 
shader input

• Gradually fade out alpha as a polygon approaches
the Z fail threshold

• No more hard edges where alpha blended particles 
intersect world geometry!



Deferred Shading Advantages

• Excellent batching
• Render each triangle exactly once
• Shade each visible pixel exactly once
• Easy to add new types of lighting shader
• Other kinds of postprocessing (blur, heathaze) are 

just special lights, and fit neatly into the existing 
framework



The Dark Side

• Alpha blending is a nightmare!
• Framebuffer bandwidth can easily get out of hand
• Can’t take advantage of hardware multisampling
• Forces a single lighting model across the entire 

scene (everything has to be 100% per-pixel)
• Not a good approach for older hardware
• But will be increasingly attractive in the future…



The End

• Any questions?


