
Advanced Depth of Field

Thorsten Scheuermann
3D Application Research Group

ATI Research, Inc.

2GDC 2004 - Advanced Depth of Field

Overview

• Background
• Using destination alpha for depth and blur

information
• Scene rendering
• Post-processing
• Demo

• This depth of field technique is an
improvement of a previous technique
developed at ATI

– Doesn’t require multiple render targets
– Better anti-aliasing

3GDC 2004 - Advanced Depth of Field

Depth Of Field

• Depth of Field causes out-of-focus objects to
appear blurry

• Computer graphics uses pinhole camera model
– Results in perfectly sharp images
– See Potmesil and Chakravarty 1981, among others

• Real cameras use lenses with finite dimensions
– This is what causes depth of field

• Important part of cinematic visual vocabulary
• Fundamental to photo-realistic rendering
• Give control to your artists! Let them control and

animate parameters of your camera
– Probably only reasonable for in-engine cut-scenes

4GDC 2004 - Advanced Depth of Field

Camera Models

pinhole
lens

thin
lens

circle of
confusion

• Pinhole lens lets only a single ray through
• In thin lens model, if point isn’t in focal plane,

multiple rays contribute to the image
• Intersection of rays with image plane

approximated by circle

5GDC 2004 - Advanced Depth of Field

Depth Of Field

6GDC 2004 - Advanced Depth of Field

Depth Of Field

7GDC 2004 - Advanced Depth of Field

Depth of Field Implementation
• Use destination alpha channel to store

per-pixel depth and blurriness information
• Pixel shaders for post-processing

– Downsample and pre-blur the image
– Use variable size filter kernel to approximate

circle of confusion
– Blend between original and pre-blurred

image for better image quality
– Take measures to prevent “leaking” sharp

foreground into blurry background

This is new!

8GDC 2004 - Advanced Depth of Field

Populating Destination Alpha
• The post-processing shader needs blurriness

and relative depth of each pixel
• We pass the camera distance of three planes to

scene shaders:
– Focal plane: Points on this plane are in focus
– Near plane: Everything closer than this is fully

blurred
– Far plane: Everything beyond the far plane is fully

blurred
• Each object’s pixel shader renders depth and

blurriness information into destination alpha

9GDC 2004 - Advanced Depth of Field

Mapping Depth to Blurriness

• Map a point’s camera depth to [-1, 1] range as
shown in pink graph

– This gives us relative depth
• To get blurriness, just take the absolute value
• Scale and bias relative depth into [0, 1] range

before writing to destination alpha
– Saves us from writing blurriness and depth into two

separate channels
+1

Focal
Plane

Near
Plane

Far
Plane

-1

rel. depth
0

abs(rel. depth)

10GDC 2004 - Advanced Depth of Field

HLSL Code for Alpha Output
// vDofParams coefficients:
// x = near blur depth; y = focal plane depth; z = far blur depth
// w = blurriness cutoff constant for objects behind the focal plane
float4 vDofParams;

float ComputeDepthBlur (float depth /* in view space */)
{

float f;

if (depth < vDofParams.y)
{

// scale depth value between near blur distance and focal distance to
// [-1, 0] range
f = (depth - vDofParams.y)/(vDofParams.y - vDofParams.x);

}
else
{

// scale depth value between focal distance and far blur distance to
// [0, 1] range
f = (depth - vDofParams.y)/(vDofParams.z - vDofParams.y);
// clamp the far blur to a maximum blurriness
f = clamp (f, 0, vDofParams.w);

}
// scale and bias into [0, 1] range
return f * 0.5f + 0.5f;

}

All pixel shaders write the result of ComputeDepthBlur() to destination alpha.

11GDC 2004 - Advanced Depth of Field

Destination Alpha Example

3m focal plane 6m focal plane 12m focal plane

This is where the focal plane intersects with the floor

12GDC 2004 - Advanced Depth of Field

Dealing with Alpha Blending

• Even though we use destination alpha for
blur information, we can still do alpha-
blending

• 1st pass:
– Render only to RGB with blending enabled

• 2nd pass:
– Render output of ComputeDepthBlur()

only to destination alpha

13GDC 2004 - Advanced Depth of Field

Post-Processing:
Pre-blurring the Image

In-Focus image

1/16th

Size

3×3
Gaussian

Blur

MSAA image from back buffer
(Destination alpha contains blurriness)

14GDC 2004 - Advanced Depth of Field

Circle Of Confusion Filter Kernel

• Stochastic sampling
• Poisson distribution

Small Blur
Center Sample

Outer Samples Large Blur

15GDC 2004 - Advanced Depth of Field

Filter Kernel For Circle Of
Confusion
• Vary kernel size based on the “blurriness”

factor
• Sample all taps from original and pre-

blurred image
– Blend between them based on tap blurriness

Point in focus Point is blurred

16GDC 2004 - Advanced Depth of Field

Reduction Of “Leaking”

• Conventional post-processing blur
techniques cause “leaking” of sharp
foreground objects onto blurry
backgrounds

• Depth compare the samples and
discard ones that can contribute to
background “leaking”

17GDC 2004 - Advanced Depth of Field

Depth Of Field Shader

• Variables used in the HLSL function:

#define NUM_TAPS 8 // number of taps the shader will use

sampler tSource; // full resolution image
sampler tSourceLow; // downsampled and filtered image

float2 poisson[NUM_TAPS]; // contains poisson-distributed positions on the
// unit circle

float2 pixelSizeHigh; // pixel size (1/image resolution) of full resolution image
float2 pixelSizeLow; // pixel size of low resolution image

float2 vMaxCoC = float2(5.0, 10.0); // maximum circle of confusion (CoC) radius
// and diameter in pixels

float radiusScale = 0.4; // scale factor for maximum CoC size on low res. image

18GDC 2004 - Advanced Depth of Field

float4 PoissonDOFFilter (float2 texCoord /* screen-space quad texture coords*/)
{

float4 cOut;
float discRadius, discRadiusLow, centerDepth;

cOut = tex2D (tSource, texCoord); // fetch center tap
centerDepth = cOut.a; // save its depth

// convert depth into blur radius in pixels
discRadius = abs (cOut.a * vMaxCoC.y - vMaxCoC.x);
discRadiusLow = discRadius * radiusScale; // compute radius on low-res image
cOut = 0; // reusing cOut to accumulate samples

for (int t = 0; t < NUM_TAPS; t++)
{

// compute tap texture coordinates
float2 coordLow = texCoord + (pixelSizeLow * poisson[t] * discRadiusLow);
float2 coordHigh = texCoord + (pixelSizeHigh * poisson[t] * discRadius);

// fetch high-res tap
float4 tapLow = tex2D (tSource, coordLow);
float4 tapHigh = tex2D (tSource, coordHigh);

// mix low- and hi-res taps based on tap blurriness
float tapBlur = abs (tapHigh.a * 2.0 - 1.0); // put blurriness into [0, 1]
float4 tap = lerp (tapHigh, tapLow, tapBlur);

// "smart" blur ignores taps that are closer than the center tap and in focus
tap.a = (tap.a >= centerDepth) ? 1.0 : abs (tap.a * 2.0 - 1.0);

cOut.rgb += tap.rgb * tap.a; // accumulate
cOut.a += tap.a;

}
return (cOut / cOut.a);

}

19GDC 2004 - Advanced Depth of Field

Demo

20GDC 2004 - Advanced Depth of Field

Conclusion

• Depth of field technique produces a
convincing photorealistic visual cue

• Use destination alpha for depth and blur
information

• Post-processing does the heavy lifting

21GDC 2004 - Advanced Depth of Field

References

• M. Potmesil, I. Chakravarty, “A lens and
aperture camera model for synthetic
image generation”. Computer Graphics
(Proceedings of SIGGRAPH 81). 15 (3),
pp. 297-305, 1981.

• G. Riguer, N. Tatarchuk, J. Isidoro, “Real-
Time Depth of Field Rendering”.
ShaderX2

	Advanced Depth of Field
	Overview
	Depth Of Field
	Camera Models
	Depth Of Field
	Depth Of Field
	Depth of Field Implementation
	Populating Destination Alpha
	Mapping Depth to Blurriness
	HLSL Code for Alpha Output
	Destination Alpha Example
	Dealing with Alpha Blending
	Post-Processing:Pre-blurring the Image
	Circle Of Confusion Filter Kernel
	Filter Kernel For Circle Of Confusion
	Reduction Of “Leaking”
	Depth Of Field Shader
	Demo
	Conclusion
	References

