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Overview

• Background
• Using destination alpha for depth and blur 

information
• Scene rendering
• Post-processing
• Demo

• This depth of field technique is an 
improvement of a previous technique 
developed at ATI

– Doesn’t require multiple render targets
– Better anti-aliasing
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Depth Of Field

• Depth of Field causes out-of-focus objects to 
appear blurry

• Computer graphics uses pinhole camera model
– Results in perfectly sharp images
– See Potmesil and Chakravarty 1981, among others

• Real cameras use lenses with finite dimensions
– This is what causes depth of field

• Important part of cinematic visual vocabulary
• Fundamental to photo-realistic rendering
• Give control to your artists!  Let them control and 

animate parameters of your camera
– Probably only reasonable for in-engine cut-scenes
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Camera Models

pinhole
lens

thin
lens

circle of
confusion

• Pinhole lens lets only a single ray through
• In thin lens model, if point isn’t in focal plane, 

multiple rays contribute to the image
• Intersection of rays with image plane 

approximated by circle
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Depth Of Field



6GDC 2004 - Advanced Depth of Field

Depth Of Field
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Depth of Field Implementation
• Use destination alpha channel to store 

per-pixel depth and blurriness information
• Pixel shaders for post-processing

– Downsample and pre-blur the image
– Use variable size filter kernel to approximate 

circle of confusion
– Blend between original and pre-blurred 

image for better image quality
– Take measures to prevent “leaking” sharp 

foreground into blurry background

This is new!
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Populating Destination Alpha
• The post-processing shader needs blurriness 

and relative depth of each pixel 
• We pass the camera distance of three planes to 

scene shaders:
– Focal plane: Points on this plane are in focus
– Near plane: Everything closer than this is fully 

blurred
– Far plane: Everything beyond the far plane is fully 

blurred
• Each object’s pixel shader renders depth and 

blurriness information into destination alpha
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Mapping Depth to Blurriness

• Map a point’s camera depth to [-1, 1] range as 
shown in pink graph

– This gives us relative depth
• To get blurriness, just take the absolute value
• Scale and bias relative depth into [0, 1] range 

before writing to destination alpha
– Saves us from writing blurriness and depth into two 

separate channels
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0
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HLSL Code for Alpha Output
// vDofParams coefficients:
// x = near blur depth; y = focal plane depth; z = far blur depth
// w = blurriness cutoff constant for objects behind the focal plane
float4 vDofParams;

float ComputeDepthBlur (float depth /* in view space */)
{

float f;

if (depth < vDofParams.y)
{

// scale depth value between near blur distance and focal distance to
// [-1, 0] range
f = (depth - vDofParams.y)/(vDofParams.y - vDofParams.x);

}
else
{

// scale depth value between focal distance and far blur distance to
// [0, 1] range
f = (depth - vDofParams.y)/(vDofParams.z - vDofParams.y);
// clamp the far blur to a maximum blurriness
f = clamp (f, 0, vDofParams.w);

}
// scale and bias into [0, 1] range
return f * 0.5f + 0.5f;

}

All pixel shaders write the result of ComputeDepthBlur() to destination alpha.
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Destination Alpha Example

3m focal plane 6m focal plane 12m focal plane

This is where the focal plane intersects with the floor
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Dealing with Alpha Blending

• Even though we use destination alpha for 
blur information, we can still do alpha-
blending

• 1st pass:
– Render only to RGB with blending enabled

• 2nd pass:
– Render output of ComputeDepthBlur()

only to destination alpha
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Post-Processing:
Pre-blurring the Image

In-Focus image

1/16th

Size

3×3 
Gaussian

Blur

MSAA image from back buffer
(Destination alpha contains blurriness)
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Circle Of Confusion Filter Kernel

• Stochastic sampling
• Poisson distribution  

Small Blur
Center Sample

Outer Samples Large Blur
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Filter Kernel For Circle Of 
Confusion
• Vary kernel size based on the “blurriness”

factor
• Sample all taps from original and pre-

blurred image
– Blend between them based on tap blurriness

Point in focus Point is blurred
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Reduction Of “Leaking”

• Conventional post-processing blur 
techniques cause “leaking” of sharp 
foreground objects onto blurry 
backgrounds

• Depth compare the samples and 
discard ones that can contribute to 
background “leaking”
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Depth Of Field Shader

• Variables used in the HLSL function:

#define NUM_TAPS  8   // number of taps the shader will use

sampler tSource; // full resolution image
sampler tSourceLow; // downsampled and filtered image

float2 poisson[NUM_TAPS];  // contains poisson-distributed positions on the
// unit circle

float2 pixelSizeHigh; // pixel size (1/image resolution) of full resolution image
float2 pixelSizeLow;  // pixel size of low resolution image

float2 vMaxCoC = float2(5.0, 10.0); // maximum circle of confusion (CoC) radius      
// and diameter in pixels

float radiusScale = 0.4; // scale factor for maximum CoC size on low res. image
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float4 PoissonDOFFilter (float2 texCoord /* screen-space quad texture coords*/)
{

float4 cOut;
float discRadius, discRadiusLow, centerDepth;

cOut = tex2D (tSource, texCoord); // fetch center tap
centerDepth = cOut.a;              // save its depth

// convert depth into blur radius in pixels
discRadius = abs (cOut.a * vMaxCoC.y - vMaxCoC.x);
discRadiusLow = discRadius * radiusScale; // compute radius on low-res image
cOut = 0;                                 // reusing cOut to accumulate samples

for (int t = 0; t < NUM_TAPS; t++)
{

// compute tap texture coordinates
float2 coordLow = texCoord + (pixelSizeLow * poisson[t] * discRadiusLow);
float2 coordHigh = texCoord + (pixelSizeHigh * poisson[t] * discRadius);

// fetch high-res tap
float4 tapLow = tex2D (tSource, coordLow);
float4 tapHigh = tex2D (tSource, coordHigh);

// mix low- and hi-res taps based on tap blurriness
float tapBlur = abs (tapHigh.a * 2.0 - 1.0); // put blurriness into [0, 1]
float4 tap = lerp (tapHigh, tapLow, tapBlur);

// "smart" blur ignores taps that are closer than the center tap and in focus
tap.a = (tap.a >= centerDepth) ? 1.0 : abs (tap.a * 2.0 - 1.0);

cOut.rgb += tap.rgb * tap.a; // accumulate
cOut.a += tap.a;

}
return (cOut / cOut.a);

}
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Demo
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Conclusion

• Depth of field technique produces a 
convincing photorealistic visual cue 

• Use destination alpha for depth and blur 
information

• Post-processing does the heavy lifting
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