
Practical Parallax Occlusion Practical Parallax Occlusion 
Mapping For Highly Detailed Mapping For Highly Detailed 

Surface RenderingSurface Rendering
Natalya TatarchukNatalya Tatarchuk

3D Application Research Group3D Application Research Group
ATI Research, Inc.ATI Research, Inc.



Let me introduce… myself
Natalya Tatarchuk

Research Engineer
Lead Engineer on ToyShop
3D Application Research Group
ATI Research, Inc.

What we do
Demos
Tools
Research



The Plan

What are we trying to solve?
Quick review of existing approaches 
for surface detail rendering
Parallax occlusion mapping details
Discuss integration into games 
Conclusions



The Plan

What are we trying to solve?
Quick review of existing approaches 
for surface detail rendering
Parallax occlusion mapping details
Discuss integration into games 
Conclusions



When a Brick Wall Isn’t Just a 
Wall of Bricks…

Concept versus realism
Stylized object work well in some scenarios
In realistic games, we want the objects to be as 
detailed as possible

Painting bricks on a wall isn’t necessarily 
enough

Do they look / feel / smell like bricks? 
What does it take to make the player really feel 
like they’ve hit a brick wall?



What Makes a Game Truly 
Immersive?

Rich, detailed worlds help the illusion of realism
Players feel more immersed into complex worlds

Lots to explore
Naturally, game play is still key

If we want the players to think they’re near a brick 
wall, it should look like one:

Grooves, bumps, scratches 
Deep shadows
Turn right, turn left – still looks 3D!



The Problem We’re Trying to Solve

An age-old 3D rendering balancing act
How do we render complex surface topology 
without paying the price on performance?

Wish to render very detailed surfaces 
Don’t want to pay the price of millions of 
triangles

Vertex transform cost
Memory footprint

Would like to render those detailed surfaces 
accurately

Preserve depth at all angles
Dynamic lighting
Self occlusion resulting in correct shadowing



Solution: Parallax Occlusion Mapping

Per-pixel ray tracing of a height field in tangent 
space
Correctly handles complicated viewing 
phenomena and surface details

Displays motion parallax
Renders complex geometric surfaces such as displaced 
text / sharp objects

Calculates occlusion and filters visibility samples 
for soft self-shadowing
Uses flexible lighting model
Adaptive LOD system to maximize quality and 
performance



Parallax Occlusion Mapping versus 
Normal Mapping

Scene rendered with Parallax 
Occlusion Mapping

Scene rendered with normal 
mapping



Parallax occlusion mapping was used to render extreme high 
details for various surfaces 
in the demo

Brick buildings
Wood-block letters for the 
toy shop sign
Cobblestone sidewalk

Surface Details in the ToyShop 
Demo



We were able to incorporate 
multiple lighting models

Some just used diffuse 
lighting
Others simulated wet 
materials
Integrated view-dependent 
reflections 
Shadow mapping was easily 
integrated into the materials 
with parallax occlusion 
mapped surfaces

All objects used the level-of-details system

Surface Details in the ToyShop 
Demo



Demo: ToyShopDemo: ToyShop



The Plan

What are we trying to solve?
Quick review of existing approaches 
for surface detail rendering
Parallax occlusion mapping details
Discuss integration into games 
Conclusions



Approximating Surface Details
First there was bump mapping…
[Blinn78]

Rendering detailed and uneven 
surfaces where normals are perturbed 
in some pre-determined manner 
Popularized as normal mapping –
as a per-pixel technique
No self-shadowing of the surface
Coarse silhouettes expose the actual geometry being drawn

Doesn’t take into account geometric 
surface depth

Does not exhibit parallax
apparent displacement of the 
object due to viewpoint change



Selected Related Work
Horizon mapping [Max88]
Interactive horizon mapping 
[Sloan00]

Parallax mapping [Kaneko01]

Parallax mapping with offset limiting [Welsh03]

Hardware Accelerated Per-Pixel 
Displacement Mapping [Hirche04]



The Plan

What are we trying to solve?
Quick review of existing approaches 
for surface detail rendering
Parallax occlusion mapping details
Discuss integration into games 
Conclusions



Parallax Occlusion Mapping

Introduced in [Browley04] “Self-Shadowing, 
Perspective-Correct Bump Mapping Using Reverse 
Height Map Tracing”
Efficiently utilizes programmable GPU pipeline for 
interactive rendering rates
Current algorithm has several significant 
improvements over the earlier technique



Parallax Occlusion Mapping: New 
Contributions

Increased precision of height field – ray 
intersections
Dynamic real-time lighting of surfaces with soft 
shadows due to self-occlusion under varying light 
conditions
Directable level-of-detail control system with 
smooth transitions between levels
Motion parallax simulation with perspective-correct 
depth



Encoding Displacement 
Information

Tangent-space normal map 

All computations are done in tangent space, and thus 
can be applied to arbitrary surfaces

Height map (displacement values)



1.0

Polygonal surface

Extruded surface

Parallax Displacement

0.0

View ray
Input texture coordinate

Displaced point on surfaceResult of normal mapping

toff



Implementation: Per-Vertex

Compute the viewing direction, the light direction 
in tangent space
Can compute the parallax offset vector (as an 
optimization)

Interpolated by the rasterizer



Implementation: Per-Pixel

Ray-cast the view ray along the parallax offset 
vector
Ray – height field profile intersection as a texture 
offset

Yields the correct displaced point visible from the given 
view angle

Light ray – height profile intersection for occlusion 
computation to determine the visibility coefficient
Shading

Using any attributes
Any lighting model



Height Field Profile Tracing

1.0

Polygonal surface

0.0

Extruded surface

View ray

t0

Parallax offset vector 

δ

toff



Binary Search for Surface-Ray 
Intersection

Binary search refers to repeatedly halving 
the search distance to determine the 
displaced point

The height field is not sorted a priori
Requires dependent texture fetches for 
computation

Incurs latency cost for each successive depth level
Uses 5 or more levels of dependent texture fetches



Per-Pixel Displacement Mapping 
with Distance Functions [Donnely05]

Also a real-time technique for rendering per-pixel 
displacement mapped surfaces on the GPU

Stores a ‘slab’ of distances 
to the height field in a 
volumetric texture

To arrive at the displaced point, 
walk the volume texture in the 
direction of the ray 

Instead of performing a 
ray-height field intersection
Uses dependent texture fetches, 
amount varies



Per-Pixel Displacement Mapping 
with Distance Functions [Donnely05]

Visible aliasing
Not just at grazing angles

Only supports 
precomputed height 
fields

Requires 
preprocessing 
to compute 
volumetric 
distance map
Volumetric texture size is prohibitive 

The idea of using a distance map to arrive at the 
extruded surface is very useful



Linear Search for Surface-Ray 
Intersection

We use just the linear search which requires 
only regular texture fetches

Fast performance
Using dynamic flow control, can break out of 
execution once the intersection is found

Simply using linear search is not enough
Linear search alone does not yield good 
rendering results

Requires high precision calculations for surface-ray 
intersections
Otherwise produces visible aliasing artifacts



Comparison of Intersection Search 
Types and Depth Bias Application

Relief Mapping with both binary and 
linear searches and no depth bias 
applied: Notice the aliasing artifacts



Comparison of Intersection Search 
Types and Depth Bias Application

Relief Mapping with both binary and 
linear searches and depth bias 
applied: Notice the horizon flattening



Comparison of Intersection Search 
Types and Depth Bias Application

Parallax occlusion mapping rendered with 
just linear search but the high precision 
height field intersection computation



A

B

Height Field Profile – Ray 
Intersection

Intersections resulted from Intersections resulted from 
direct height profile query direct height profile query 
(piecewise constant (piecewise constant 
approximation)approximation)

Intersections due to Intersections due to 
piecewise linear height field piecewise linear height field 
approximationapproximation



Higher Quality With Dynamic 
Sampling Rate

Sampling-based algorithms are prone to aliasing
Solution: Dynamically adjust the sampling rate for 
ray tracing as a linear function of angle between the 
geometric normal and the view direction ray

Perspective-correct depth with 
dynamic sampling rate

Aliasing at grazing angles due 
to static sampling rate

)(ˆˆ
minmaxmin nnVNnn ts −•+=



1.0

Polygonal surface

Self-Occlusion Shadows

Extruded surface

View ray

Light ray toff



Hard Shadows Computation

Simply determining whether the current 
feature is occluded yields hard shadows

[Policarpo05]



Soft Shadows Computation

We can compute soft shadows by filtering 
the visibility samples during the occlusion 
computation
Don’t compute
shadows for objects 
not facing the light 
source:

N ● L > 0



Light 
source

Penumbral Size Approximation
1.0

0.0

Light 
vector

h1
h2

h3
h4

h5
h6

h0

h7
ws

Blocker

Surface

db

dr

wp

The blocker heights hi allow us to 
compute the blocker-to-receiver
ratio

wp = ws (dr – db) / db



Shadows Comparison Example

Relief Mapping with Hard Shadows
Parallax Occlusion Mapping 
with Soft Shadows



Illuminating the Surface

Use the computed texture coordinate offset 
to sample desired maps (albedo, normal, 
detail, etc.)
Given those 
parameters and the 
visibility information, 
we can apply any 
lighting model as 
desired

Phong
Compute reflection / refraction
Very flexible



Can Use A Variety of Illumination 
Effects

For many effects, simply diffuse lighting with 
base texture looks great

Diffuse only suffices 
for many effects

Glossy specular 
easily computed –
can use gloss maps 
to reduce specularity 
in the valleys



Adaptive Level-of-Detail System
Compute the current mip map level 

For furthest LOD levels, render using 
normal mapping (threshold level)

As the surface approaches the viewer, 
increase the sampling rate as a 
function of the current mip map level

In transition region between the 
threshold LOD level, blend between 
the normal mapping and the full 
parallax occlusion mapping



Results

Implemented using DirectX 9.0c shaders (separate 
implementations in SM 2.0, 2.b and 3.0) 

RGBα texture: 1024 x 1024,
non-contiguous uvs RGBα texture: tiled 128 x 128



Parallax Occlusion Mapping vs. 
Actual Geometry

-1100 polygons with parallax occlusion       Frame Rate:
mapping (8 to 50 samples used)               - 255 fps on ATI  

- Memory: 79K vertex buffer                         Radeon hardware
6K index buffer - 235 fps with skinning

13Mb texture (3Dc) 
(2048 x 2048 maps)

_______________________________
Total: < 14 Mb

- 1,500,000 polygons with normal               Frame Rate:
mapping                                                    - 32 fps on ATI Radeon

- Memory: 31Mb vertex buffer                        hardware 
14Mb index buffer         

____________________________
Total: 45 Mb



DemoDemo



The Plan

What are we trying to solve?
Quick review of existing approaches 
for surface detail rendering
Parallax occlusion mapping details
Discuss integration into games 

Performance analysis and optimizations
Considerations for authoring art assets

Conclusions



How Does One Render Height 
Maps, Exactly?

Two possibilities 
Render surface details as if “pushed down” – the actual 
polygonal surface will be above the rendered surface
In this case the top (polygon face) is at height = 1, 
and the deepest value is at 0
Or - actually push surface details upward (ala displacement 
mapping)

This affects both the art pipeline and the actual 
algorithm
In the presented algorithm, we render the surface 
pushed down



Performance vs Image Quality
Tradeoffs between speed and quality

Less samples means more possibility for missed features 
and incorrect intersections
This can result in stair stepping artifacts at oblique angles

Silhouettes are not computed correctly
Art can be authored to hide this artifact
Alternatives exist (at the expense of memory and extra 
computations)

Use vertex curvature data and texkill in the pixel shader to clip 
pixels at the silhouettes
Relief Mapping example shows a result
Aliasing at the object silhouettes can be very strong



Incorporate Dynamic Height 
Field Rendering with POM

Easily supports dynamically rendered height fields
Generate height field 
Compute normals for this height field
Apply inverse displacement mapping w/ POM algorithm to that 
height field 
Shade using computed normals

Examples of dynamic HF generation:
Water waves / procedurally generated objects / noise
Explosions in objects 
Bullet holes

Approaches that rely on precomputation do not support 
dynamic height field rendering in real-time

Displacement mapping with distance maps
Encoding additional vertex data such as curvature



Combine Fluid Dynamics with POM

Compute Navier-Stokes simulation for fluid dynamics for a 
height field

Example: Fluid flow in mysterious galaxies from “Screen Space”
ATI X1900 screen saver

Fluid dynamics algorithm can be executed entirely on the GPU
See ATI technical report on “Explicit Early-Z Culling for Efficient 
Fluid Flow Simulation and Rendering” by P. Sander, N. Tatarchuk 
and J.L. Mitchell for details



Example: Gas Planet Scene

Random particles in texture 
space emit flow density and 
velocity
Flow used to compute height 
field for parallax occlusion 
mapping
Compute dynamic normals 
for the flow height field
Parallax occlusion mapping 
used to simulate cloud layer 
on large planet

Height Map Normal Map



Other Examples: Asteroids scene

Scene with several parallax mapped asteroids
Billboards used for faraway nebulae



Nebula scene

Several layers of parallax mapped geometry
Flow density and velocity emitted in screen space at 
all layers



Correct Depth Output

Simply using parallax occlusion mapping will yield 
incorrect object intersection

Depth will be computed for the reference surface
May display object gaps or cut-throughs

Solution: update each pixel’s Z value when 
computing the displacement

Compensate for simulated extruded surface
Use the height field value and the reference plane Z value 
to compute correct depth 
[Policarpo05] shows an example

Performance will be affected
Z is output from the pixel shader
No longer able to use HiZ for optimization 



Since the computation is in tangent space, the 
approach can be used with any surfaces

Works equally well on curved objects
Beware of silhouettes 

If vertex curvature can be encoded into
vertex data

Extend current algorithm to use that
data to improve height-field 
intersection using the curvature
This reduces aliasing and potential
misses at steep grazing angles

Parallax Occlusion Mapping with 
Curved Surfaces



Able to Handle Difficult Cases



Shader Implementation Details
Really takes advantage of the great architecture of 
current and next-gen GPUs

Balances texture fetches and control flow with ALU load
Flow control:

Uses dynamic flow control when supported
Flow control cost is offset by the ALU / texture fetches
ATI Shader Compiler makes aggressive optimizations

Easily supports a range of Dx9 hardware targets 
Multipass w/ ps_2_0
Single pass in ps_2_b
Single pass dynamic flow control in ps_3_0



PS_2_0 Shader Details
Uses static flow control to compute intersections

Compute parallax offset in first pass, output to render target
In second pass computing lighting and shadow term

8 samples in 64 instructions
Performs quite fast
Doesn’t use dynamic number of iterations so the number of 
samples for height field tracing is constant
This may cause some sampling aliasing at grazing angles if not 
enough samples are used
Can use more than one pass to sample height map at higher 
frequencies 
2-3 passes 8 samples each gives good results

Makes oblique angles look better!



PS_2_b Shader Details

Single pass to compute the parallaxed offset, 
lighting and self-shadowing
Uses a static number of iterations to compute 
height field intersections

This may cause some sampling aliasing at 
grazing angles if not enough samples are used

Great performance 
Use as many samples as needed for your art 
/ scene

Pay in form of instructions



Shader Model 3.0 Gives Ideal 
Results

Uses dynamic flow control and early out during ray-
tracing operations

A close relationship with the assembly is key
Always double-check to see if what you are expecting to 
get is what you are getting
Beware of unrolled static loops

Best quality results and optimizations
Nicely balances ALU ops with control flow 
instructions and texture fetches
ATI Driver Shader Compiler optimizations in action:

A 200 ALU ops and 32 texture ops of the disassembled 
HLSL shader becomes 96 ALU and 20 texture fetches
That’s 50% faster!



Authoring Art for POM: Pointers

Easiest – less detailed height maps with wide 
features

If rendering bricks or cobble stones, it helps to have wider 
grout (“valley”) regions
Soft, blurry height maps perform better

This algorithm gives the artist control over the 
range for displacing pixels

This represents the range of the height field
Easily modifiable to get the right look

Remember – the algorithm is pushing down, not up 
Use this when placing geometry – may need to play the 
actual geometry higher than planning to render 
Height map: white is the top, black is the bottom



POM Art Assets
Color Map
Normal map

In tangent space
Height Map

8-bit (grayscale)
That’s it!
Minimal 
increase in 
memory use



Authoring Strategies
For planar surfaces 

High-poly source data compared to low poly 
approximation
Converting 2d texture data to normal map works 
well for flat surfaces

For non-planar surfaces
Generate normal and height maps from highly 
detailed geometry

Avoid drastic height changes
Blurring height map can help



Authoring Art Considerations for 
POM

Can alias at extreme viewing angles
Stretching of texture coordinates

In some cases requires smooth height maps or 
high resolution maps

Intersecting geometry clips at original height, 
not at displaced height

One can modify the shader to compute depth 
based on the extruded surface intersection

Tile sets require buffer region to eliminate 
seam artifacts



POM and Tilesets
Need Buffer 
Regions
10-20 pixel buffer 
region 
Authoring POM 
tilesets can must be 
done with care Tileset image Height map



The Plan

What are we trying to solve?
Quick review of existing approaches 
for surface detail rendering
Parallax occlusion mapping details
Discuss integration into games 
Conclusions



Conclusions
Powerful technique for 
rendering complex surface 
details in real time

Higher precision height field – ray intersection 
computation
Self-shadowing for self-occlusion in real-time
LOD rendering technique for textured scenes

Produces excellent lighting results
Has modest texture memory footprint

Comparable to normal mapping
Efficiently uses existing pixel pipelines for highly 
interactive rendering
Supports dynamic rendering of height fields and 
animated objects



Acknowledgements

Zoe Brawley, Relic Entertainment
Pedro Sander, for ScreenSpace screensaver work 
and related slides



The ToyShop TeamThe ToyShop Team
Lead ArtistLead Artist Lead ProgrammerLead Programmer
Dan Roeger                         Natalya TatarchukDan Roeger                         Natalya Tatarchuk

David GosselinDavid Gosselin

ArtistsArtists
Daniel Szecket, Eli Turner, and Abe WileyDaniel Szecket, Eli Turner, and Abe Wiley

Engine / Shader ProgrammingEngine / Shader Programming
John Isidoro, Dan Ginsburg, Thorsten Scheuermann and  Chris OatJohn Isidoro, Dan Ginsburg, Thorsten Scheuermann and  Chris Oat

ProducerProducer ManagerManager
Lisa CloseLisa Close Callan McInallyCallan McInally



Reference Material

www.ati.com/developer
Demos, GDC presentations, papers and technical reports, and 
related materials

N. Tatarchuk. 2006. “Dynamic Parallax Occlusion Mapping 
with Approximate Soft Shadows”, ACM SIGGRAPH 
Symposium on Interactive 3D Graphics and Games
P. Sander, N. Tatarchuk, J. L. Mitchell. 2004. “Explicit Early-Z 
Culling for Efficient Flow Simulation and Rendering”, ATI 
Research Technical Report, August 2004. 
ATI ToyShop demo:
http://www.ati.com/developer/demos/rx1800.html
ATI ScreenSpace screen saver: 
http://www.ati.com/designpartners/media/screensavers/RadeonX1k.html



Questions?

natasha@ati.com


