From the Quick Reference Card

Vulkan Pipeline Diagram

FROM APPLICATION
- Render
- Input assembler
- Vertex shader
- Pixel assembler
- Pixel shader
- Vertex buffer binding
- Index buffer binding
- Uniform buffer
- Descriptor set
- Storage buffer
- Framebuffer
- Depth stencil attachment
- Color attachment

Some Vulkan commands specify generic objects that can be used for ultimate flexibility; these commands allow the programmer to specify additional objects, such as texture maps, or can be used to create custom objects for complex pipelines. The heavy black lines in this illustration show the basic pipeline used in computer graphics applications; the light gray lines indicate additional features and capabilities.

FROM APPLICATION (continued)
- Vertex buffer binding
- Index buffer binding
- Uniform buffer
- Descriptor set
- Storage buffer
- Framebuffer
- Depth stencil attachment
- Color attachment

Vulkan 1.0 Quick Reference

Some Vulkan commands specify generic objects that can be used for ultimate flexibility; these commands allow the programmer to specify additional objects, such as texture maps, or can be used to create custom objects for complex pipelines. The heavy black lines in this illustration show the basic pipeline used in computer graphics applications; the light gray lines indicate additional features and capabilities.
Terminology Issues

A **Data Buffer** is just a group of contiguous bytes in GPU memory. They have not inherent meaning. The data that is stored there is whatever you want it to be. (This is sometimes called a “Binary Large Object”, or “BLOB”.)

It is up to you to be sure that the writer and the reader of the Data Buffer are interpreting the bytes in the same way!

Vulkan calls these things “Buffers”. But, Vulkan calls other things “Buffers”, too, such as Texture Buffers and Command Buffers. So, I have taken to calling these things “Data Buffers” and have even gone to far as to override some of Vulkan’s own terminology:

```c
typedef VkBuffer VkDataBuffer;
```

Vulkan: Buffers

[Diagram of Vulkan Buffer creation and manipulation functions]
VkBufferCreateInfo vbci;
 vbci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
 vbci.pNext = nullptr;
 vbci.flags = 0;
 vbci.size = << buffer size in bytes >>
 vbci.usage = <<or'ed bits of: >>
 VK_USAGE_TRANSFER_SRC_BIT
 VK_USAGE_TRANSFER_DST_BIT
 VK_USAGE_UNIFORM_TEXEL_BUFFER_BIT
 VK_USAGE_STORAGE_TEXEL_BUFFER_BIT
 VK_USAGE_UNIFORM_BUFFER_BIT
 VK_USAGE_STORAGE_BUFFER_BIT
 VK_USAGE_INDEX_BUFFER_BIT
 VK_USAGE_VERTEX_BUFFER_BIT
 VK_USAGE_INDIRECT_BUFFER_BIT
 vbci.sharingMode = << one of: >>
 VK_SHARING_MODE_EXCLUSIVE
 VK_SHARING_MODE_CONCURRENT
 vbci.queueFamilyIndexCount = 0;
 vbci.pQueueFamilyIndices = (const iont32_t) nullptr;

VkBuffer Buffer;
result = vkCreateBuffer (LogicalDevice, IN &vbci, PALLOCATOR, OUT &Buffer);

VkMemoryRequirements vmr;
result = vkGetBufferMemoryRequirements(LogicalDevice, Buffer, OUT &vmr);

VkMemoryAllocateInfo vmai;
 vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
 vmai.pNext = nullptr;
 vmai.flags = 0;
 vmai.allocationSize = vmr.size;
 vmai.memoryTypeIndex = FindMemoryThatIsHostVisible();

VkDeviceMemory vdm;
result = vkAllocateMemory(LogicalDevice, IN &vmai, PALLOCATOR, OUT &vdm);

result = vkBindBufferMemory(LogicalDevice, Buffer, IN vdm, 0); // 0 is the offset

result = vkMapMemory(LogicalDevice, IN vdm, 0, VK_WHOLE_SIZE, 0, &ptr);
<< do the memory copy >>
result = vkUnmapMemory(LogicalDevice, IN vdm);
Finding the Right Type of Memory

```c
int FindMemoryThatIsHostVisible( )
{
    VkPhysicalDeviceMemoryProperties vpdmp;
    vkGetPhysicalDeviceMemoryProperties( PhysicalDevice, OUT &vpdmp );
    for( unsigned int i = 0; i < vpdmp.memoryTypeCount; i++ )
    {
        VkMemoryType vmt = vpdmp.memoryTypes[i];
        if( ( vmt.propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT ) != 0 )
            return i;
    }
    return -1;
}
```
Finding the Right Type of Memory

```
VkPhysicalDeviceMemoryProperties vpdmp;
vkGetPhysicalDeviceMemoryProperties( PhysicalDevice, OUT &vpdmp );
```

11 Memory Types:
- Memory 0: DeviceLocal
- Memory 1: DeviceLocal
- Memory 2: HostVisible HostCoherent
- Memory 3: HostVisible HostCoherent HostCached

2 Memory Heaps:
- Heap 0: size = 0xb7c00000 DeviceLocal
- Heap 1: size = 0xfac00000

Something I’ve Found Useful

I find it handy to encapsulate buffer information in a struct:

```
typedef struct MyBuffer
{
    VkDataBuffer buffer;
    VkDeviceMemory vdm;
    VkDeviceSize size;
} MyBuffer;
```

```
MyBuffer MyMatrixUniformBuffer;
```

It’s the usual object-oriented benefit – you can pass around just one data-item and everyone can access whatever information they need.
Initializing a Data Buffer

It's the usual object-oriented benefit — you can pass around just one data-item and everyone can access whatever information they need.

```c
VkResult
Init05DataBuffer( VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer )
{
    . . .
    vbci.size = pMyBuffer->size = size;
    . . .
    result = vkCreateBuffer( LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer );
    . . .
    pMyBuffer->vdm = vdm;
    . . .
}
```

Here's the C struct to hold some uniform variables

```
struct matBuf
{
    glm::mat4 uModelMatrix;
    glm::mat4 uViewMatrix;
    glm::mat4 uProjectionMatrix;
    glm::mat3 uNormalMatrix;
};
```

Here's the shader code to access those uniform variables

```
layout( std140, set = 0, binding = 0 ) uniform matBuf
{
    mat4 uModelMatrix;
    mat4 uViewMatrix;
    mat4 uProjectionMatrix;
    mat4 uNormalMatrix;
} Matrices;
```
Filling those Uniform Variables

```cpp
glm::vec3 eye(0., 0., EYEDIST);
glm::vec3 look(0., 0., 0.);
glm::vec3 up(0., 1., 0.);

Matrices.uModelMatrix = glm::mat4(1); // identity
Matrices.uViewMatrix = glm::lookAt(eye, look, up);
Matrices.uProjectionMatrix = glm::perspective(FOV, (double)Width/(double)Height, 0.1, 1000.);
Matrices.uProjectionMatrix[1][1] *= -1.;
Matrices.uNormalMatrix = glm::inverseTranspose(glm::mat3(Matrices.uModelMatrix));
```

The Parade of Data

The MyBuffer that will represent the collection of data buffer information is not holding any actual data. This is used by Vulkan.

```cpp
MyBuffer MyMatrixUniformBuffer;
```

This C struct is holding the actual data. It is writeable by the application.

```cpp
struct matBuf Matrices;
```

The Data Buffer in GPU memory is holding the actual data. It is readable by the shaders.

```cpp
uniform matBuf Matrices;
```

There is one more step between here and the shaders – Descriptor Sets. Here’s a quick preview:
The Descriptor Set for the Buffer

We will come to Descriptor Sets later, but for now think of them as the link between the BLOB of uniform variables in GPU memory and the block of variable names in your shader programs.

```c
VkDescriptorBufferInfo vdbi0;
    vdbi0.buffer = MyMatrixUniformBuffer.buffer;
    vdbi0.offset = 0;  // bytes
    vdbi0.range = sizeof(Matrices);

VkWriteDescriptorSet vwds0;
    // ds 0:
    vwds0.sType = VK_STRUCTURE_TYPE_WRITE_DESCRIPTOR_SET;
    vwds0.pNext = nullptr;
    vwds0.dstSet = DescriptorSets[0];
    vwds0.dstBinding = 0;
    vwds0.dstArrayElement = 0;
    vwds0.descriptorCount = 1;
    vwds0.descriptorType = VK_DESCRIPTOR_TYPE_UNIFORM_BUFFER;
    vwds0.pBufferInfo = &vdbi0;
    vwds0.pImageInfo = (VkDescriptorImageInfo*)nullptr;

vkUpdateDescriptorSets( LogicalDevice, 1, &vwds0, IN 0, (VkCopyDescriptorSet*)nullptr );
```

Creating and Filling the Data Buffer

Init05UniformBuffer(sizeof(Matrices), &MyMatrixUniformBuffer);
Fill05DataBuffer(MyMatrixUniformBuffer, (void *) &Matrices);
Creating and Filling the Data Buffer – the Details

```c
VkResult
Init05DataBuffer( VkDeviceSize size, VkBufferUsageFlags usage, OUT MyBuffer * pMyBuffer )
{
    VkResult result = VK_SUCCESS;
    VkBufferCreateInfo vbci;
    vbci.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
    vbci.pNext = nullptr;
    vbci.flags = 0;
    vbci.size = pMyBuffer->size = size;
    vbci.usage = usage;
    vbci.sharingMode = VK_SHARING_MODE_EXCLUSIVE;
    vbci.queueFamilyIndexCount = 0;
    vbci.pQueueFamilyIndices = (const uint32_t *)nullptr;
    result = vkCreateBuffer( LogicalDevice, IN &vbci, PALLOCATOR, OUT &pMyBuffer->buffer );

    VkMemoryRequirements vmr;
    vkGetBufferMemoryRequirements( LogicalDevice, IN pMyBuffer->buffer, OUT &vmr ); // fills vmr

    VkMemoryAllocateInfo vmai;
    vmai.sType = VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO;
    vmai.pNext = nullptr;
    vmai.allocationSize = vmr.size;
    vmai.memoryTypeIndex = FindMemoryThatIsHostVisible( );

    VkDeviceMemory vdm;
    result = vkAllocateMemory( LogicalDevice, IN &vmai, PALLOCATOR, OUT &vdm );
    pMyBuffer->vdm = vdm;

    result = vkBindBufferMemory( LogicalDevice, pMyBuffer->buffer, IN vdm, 0 ); // 0 is the offset
    return result;
}
```

Creating and Filling the Data Buffer – the Details

```c
VkResult
Fill05DataBuffer( IN MyBuffer myBuffer, IN void * data )
{
    // the size of the data had better match the size that was used to Init the buffer!

    void * pGpuMemory;
    vkMapMemory( LogicalDevice, IN myBuffer.vdm, 0, VK_WHOLE_SIZE, 0, &pGpuMemory ); // 0 and 0 are offset and flags

    memcpy( pGpuMemory, data, (size_t)myBuffer.size );
    vkUnmapMemory( LogicalDevice, IN myBuffer.vdm );
    return VK_SUCCESS;
}
```

Remember – to Vulkan and GPU memory, these are just bits. It is up to you to handle their meaning correctly.