Computer Graphics Framebuffers

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License

Oregon State University
Computer Graphics
The Framebuffers

[Diagram showing the flow of data between the Video Driver, Depth-Buffer, Front, Back, and Double-buffered Color Framebuffers]

- Video Driver
- Depth-Buffer
- Front
- Back
- Double-buffered Color Framebuffers

Flow of data:
- Update from Video Driver to Depth-Buffer
- Refresh from Depth-Buffer to Video Driver
- Update from Video Driver to Front
- Refresh from Front to Video Driver
- Update from Video Driver to Back
- Refresh from Back to Video Driver
The Framebuffer Uses RGB Colors
The Framebuffer: Integer Color Storage

<table>
<thead>
<tr>
<th># Bits/color</th>
<th># Intensities per color</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$2^8 = 256$ “Typical”</td>
</tr>
<tr>
<td>10</td>
<td>$2^{10} = 1024$ High Dynamic Range (HDR)</td>
</tr>
<tr>
<td>12</td>
<td>$2^{12} = 4096$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th># Bits/pixel</th>
<th>Total colors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>$2^{24} = 16.7$ M</td>
</tr>
<tr>
<td>30</td>
<td>$2^{30} = 1$ B</td>
</tr>
<tr>
<td>36</td>
<td>$2^{36} = 69$ B</td>
</tr>
</tbody>
</table>

Typical
High Dynamic Range (HDR)
The Framebuffer: Floating Point Color Storage

• 16- or 32-bit floating point for each color component

Why so many bits?

Many modern algorithms do arithmetic on the framebuffer color components, or treat the framebuffer color components as data. They need the extra precision during the arithmetic.

However, the display system cannot display all of those possible colors.
The Framebuffer

• **Alpha** values
 - Transparency per pixel
 \[\alpha = 0. \text{ is invisible} \]
 \[\alpha = 1. \text{ is opaque} \]
 - Represented in 8-32 bits
 (integer or floating point)
 - Alpha blending equation:

\[
\text{Color} = \alpha C_1 + (1 - \alpha) C_2
\]

\[
0.0 \leq \alpha \leq 1.0
\]

Note: this is really *blending*, not transparency!
The Framebuffer

• **Z-buffer**
 - Used for hidden surface removal
 - Holds pixel depth
 - Typically 32 bits deep
 - Integer or floating point

Bits / Z Total Z Values:
32 $2^{32} = 4 \text{ B}$
glutSwapBuffers()

// swap the double-buffered framebuffers:

```c
    glutSwapBuffers( );
```

```c
    glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH );
```

```c
    glDrawBuffer( GL_BACK );
```

You draw into here

This is called the *update*

The monitor displays from here

"swap buffers" changes the role of the two framebuffers

This is called the *refresh*

You draw into here

The monitor displays from here
The Video Driver

The viewer sees the contents of this framebuffer.

Double-buffered Color Framebuffers

Depth-Buffer

Front

Back
The Video Driver

- **N refreshes/second** (N is between 50 and 100)

- The framebuffer contains the R,G,B that define the color at each pixel

- Because of the double-buffering, **Refresh** is asynchronous from **Update**, that is, the monitor gets refreshed at N (60) frames per second, no matter how fast or slowly you update the back buffer.