Geometric Modeling for Computer Graphics

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Explicitly Listing Geometry and Topology

Models can consist of thousands of vertices and faces – we need some way to list them efficiently

This is called a **Mesh**. If it’s in nice neat rows like this, it is called a **Regular Mesh**. If it’s not, it is called an **Irregular Mesh**, or oftentimes called a **Triangular Irregular Mesh**, or **TIN**.
Explicitly Listing Geometry and Topology

```c
static GLfloat CubeVertices[ ][3] = {
    { -1., -1., -1. },
    {  1., -1., -1. },
    { -1.,  1., -1. },
    {  1.,  1., -1. },
    { -1., -1.,  1. },
    {  1., -1.,  1. },
    { -1.,  1.,  1. },
    {  1.,  1.,  1. }
};

static GLfloat CubeColors[ ][3] = {
    { 0., 0., 0. },
    { 1., 0., 0. },
    { 0., 1., 0. },
    { 1., 1., 0. },
    { 0., 0., 1. },
    { 1., 0., 1. },
    { 0., 1., 1. },
    { 1., 1., 1. }
};

static GLuint CubeQuadIndices[ ][4] = {
    { 0, 2, 3, 1 },
    { 4, 5, 7, 6 },
    { 1, 3, 7, 5 },
    { 0, 4, 6, 2 },
    { 2, 6, 7, 3 },
    { 0, 1, 5, 4 }
};
```
Cube Example
The Cube Can Also Be Defined with Triangles

```cpp
GLuint CubeQuadIndices[ ][4] = {
    {0, 2, 3, 1},
    {4, 5, 7, 6},
    {1, 3, 7, 5},
    {0, 4, 6, 2},
    {2, 6, 7, 3},
    {0, 1, 5, 4}
};

GLuint CubeTriangleIndices[ ][3] = {
    {0, 2, 3},
    {0, 3, 1},
    {4, 5, 7},
    {4, 7, 6},
    {1, 3, 7},
    {1, 7, 5},
    {0, 4, 6},
    {0, 6, 2},
    {2, 6, 7},
    {2, 7, 3},
    {0, 1, 5},
    {0, 5, 4}
};
```
3D Printing uses a Triangular Mesh Data Format
3D Printing uses a Triangular Mesh Data Format
Dessert at the House of Someone Obsessed with OSU and Computer Graphics 😊
Another way to Model:
Remember Venn Diagrams (2D Boolean Operators) from High School?

Two Overlapping Shapes

Union: $A \cup B$

Intersection: $A \cap B$

Difference: $A - B$
Solid Modeling Using 3D Boolean Operators

Two Overlapping Solids

Union: $A \cup B$

Intersection: $A \cap B$

Difference: $A - B$

This is often called **Constructive Solid Geometry**, or CSG
Another way to Model: Curve Sculpting – Bezier Curve Sculpting

\[P(t) = (1 - t)^3 P_0 + 3t(1 - t)^2 P_1 + 3t^2 (1 - t) P_2 + t^3 P_3 \]

\[0 \leq t \leq 1. \]

where \(P \) represents \(\begin{pmatrix} x \\ y \\ z \end{pmatrix} \)
Curve Sculpting – Bezier Curve Sculpting Example
Moving a single point moves an entire curve
Another way to Model: Surface Sculpting

Moving a single point moves an entire surface
Surface Equations can also be used for Analysis

With Contour Lines

Showing Curvature
Another way to Model: Sculpting with a Wireframe Mesh

This is often called a “Lattice”
Modeling → Simulation (Explosion)
Object Modeling Rules for 3D Printing

The object must be a legal solid. It must have a definite inside and a definite outside. It can’t have any missing face pieces.

“Definite inside and outside” is sometimes called “Two-manifold” or “Watertight”
The Simplified Euler's Formula* for Legal Solids

*sometimes called the Euler-Poincaré formula

\[F - E + V = 2 \]

Where:
- **F** = Faces
- **E** = Edges
- **V** = Vertices

For a cube, \(6 - 12 + 8 = 2 \)

The full formula is:

\[F - E + V - L = 2(B - G) \]

Where:
- **F** = Faces
- **E** = Edges
- **V** = Vertices
- **L** = Inner Loops (within faces)
- **B** = Bodies
- **G** = Genus (number of through-holes)
Objects cannot pass through other objects. If you want two shapes together, do a Boolean union on them so that they become one complete object.