Computer Graphics Framebuffers

Mike Bailey
mjb@cs.oregonstate.edu

The Framebuffers

Depth-Buffer

Update

Back

Front

Refresh

Double-buffered Color Framebuffers

Video Driver
glutSwapBuffers()

// swap the double-buffered framebuffers:

```
void glutSwapBuffers();
```

```
// glutInitDisplayMode( GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH );
```

```
glDrawBuffer( GL_BACK );
```

You draw into here

This is called the **update**

The monitor displays from here

“swap buffers” changes the role of the two framebuffers

This is called the **refresh**

You draw into here

The monitor displays from here

The Video Driver

The viewer sees the contents of this framebuffer
The Video Driver

- N refreshes/second (N is between 50 and 100)
- The framebuffer contains the R,G,B that define the color at each pixel
- Because of the double-buffering, Refresh is asynchronous from Update, that is, the monitor gets refreshed at N (60) frames per second, no matter how fast or slowly you update the back buffer.

The Framebuffer Uses RGB Colors

- Red
- Yellow
- Green
- Magenta
- White
- Cyan
- Blue
The Framebuffer:
Integer Color Storage

<table>
<thead>
<tr>
<th># Bits/color</th>
<th># Intensities per color</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>$2^8 = 256$</td>
</tr>
<tr>
<td>10</td>
<td>$2^{10} = 1024$</td>
</tr>
<tr>
<td>12</td>
<td>$2^{12} = 4096$</td>
</tr>
</tbody>
</table>

Typical

High Dynamic Range (HDR)

Bits/pixel Total colors:

<table>
<thead>
<tr>
<th># Bits/pixel</th>
<th>Total colors:</th>
</tr>
</thead>
<tbody>
<tr>
<td>24</td>
<td>$2^{24} = 16.7$ M</td>
</tr>
<tr>
<td>30</td>
<td>$2^{30} = 1$ B</td>
</tr>
<tr>
<td>36</td>
<td>$2^{36} = 69$ B</td>
</tr>
</tbody>
</table>

The Framebuffer: Floating Point Color Storage

- 16- or 32-bit floating point for each color component

Why so many bits?

Many modern algorithms do arithmetic on the framebuffer color components, or treat the framebuffer color components as data. They need the extra precision during the arithmetic.

However, the display system cannot display all of those possible colors.
• **Alpha** values
 - Transparency per pixel
 \(\alpha = 0 \) is invisible
 \(\alpha = 1 \) is opaque
 - Represented in 8-32 bits
 (integer or floating point)
 - Alpha blending equation:

\[
\text{Color} = \alpha C_1 + (1 - \alpha) C_2
\]

\[0.0 \leq \alpha \leq 1.0\]

Note: this is really blending, not transparency!

• **Z-buffer**
 - Used for hidden surface removal
 - Holds pixel depth
 - Typically 32 bits deep
 - Integer or floating point

\# Bits / Z	Total Z Values:
32 | \(2^{32} = 4B\)