Computer Graphics Framebuffers

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.

The Framebuffers

Video Driver

Update

Depth-Buffer

Refresh

Double-buffered
Color Framebuffers

The Video Driver

The viewer sees the contents of the front framebuffer.

glutSwapBuffers()

// swap the double-buffered framebuffers:
glutSwapBuffers();

glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH);
glDrawBuffer(GL_BACK);

You draw into here

Front

This is called the update

"swap buffers" changes the role of the two framebuffers

This is called the refresh

You draw into here

The monitor displays from here

The monitor displays from here

The viewer sees the contents of the front framebuffer.
The Video Driver

- \(N \) refreshes/second (typically, \(N \) is between 50 and 100)
- The framebuffer contains the R,G,B that define the color at each pixel
- Because of the double-buffering, \textit{Refresh} is asynchronous from \textit{Update}, that is, the monitor gets refreshed at \(N \) (60) frames per second, no matter how fast or slowly you update the back buffer.

The Framebuffer Uses RGB Colors

![RGB Colors Diagram](image)

The Framebuffer: Integer Color Storage

<table>
<thead>
<tr>
<th># Bits/color</th>
<th># Intensities per color</th>
<th>Total colors</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>(2^8 = 256)</td>
<td>256</td>
</tr>
<tr>
<td>10</td>
<td>(2^{10} = 1024)</td>
<td>1024</td>
</tr>
<tr>
<td>12</td>
<td>(2^{12} = 4096)</td>
<td>4096</td>
</tr>
</tbody>
</table>

The Framebuffer: Floating Point Color Storage

- 16- or 32-bit floating point for each color component

Why so many bits?

Many modern algorithms do arithmetic on the framebuffer color components or treat the framebuffer color components as data. They need the extra precision during the arithmetic. However, the display system cannot produce all of those possible colors.
• **Alpha** values
 - Transparency per pixel
 - $\alpha = 0.$ is invisible
 - $\alpha = 1.$ is opaque
 - Represented in 8-32 bits (integer or floating point)
 - Alpha blending equation:
 \[
 \text{Color} = \alpha C_1 + (1 - \alpha) C_2
 \]
 \[0.0 \leq \alpha \leq 1.0\]

 Note: this is really **blending**, not transparency!

Why do things in front look like they are really in front?

Your application might draw this cube's polygons in 1-2-3-4-5-6 order, but 1, 3, and 4 still need to look like they were drawn last:

Solution #1: Sort your polygons in 3D by depth and draw them back-to-front.
In this case 1-2-3-4-5-6 becomes 5-6-2-4-1-3.
This is called the **Painter's Algorithm**. It sucked to have to do things this way.

Why do things in front look like they are really in front?

Your application might draw this cube's polygons in 1-2-3-4-5-6 order, but 1, 3, and 4 still need to look like they were drawn last:

Solution #2: Add an extension to the framebuffer to store the depth of each pixel. This is called a **Depth-buffer** or **Z-buffer**. Only allow pixel stores when the depth of the incoming pixel is closer to the viewer than the pixel that is already there.
Why do things in front look like they are really in front?

With Depth Buffer

1. Why do things in front look like they are really in front?

With Depth Buffer

1. Why do things in front look like they are really in front?

Without Depth Buffer

1. Why do things in front look like they are really in front?

Without Depth Buffer

1. Why do things in front look like they are really in front?