
In-‐Class	 Exercises	 for	 Shadow	 Algorithms	 	
Alex	 Wiens	 and	 Gitta	 Domik,	 University	 of	 Paderborn,	 Germany	

Abstract: We are describing two exercises to deepen the understanding of two popular real-time shadow
algorithms, namely shadow mapping and shadow volumes. Each of the exercises takes less than 10 minutes to
perform during lecture time and leads to a profounder understanding and serves as a basis for further discussions
of improvements of these algorithms. By using this exercise we noticed an evident increase in implementing
shadow algorithms for later real-time graphics projects.

1. Background	 of	 Course	

The course “Computer Graphics Rendering” at the Computer Science Department at
the University of Paderborn is for advanced Bachelor students who already had
some fundamental Computer Graphics course or are quick learners. This rendering
course emphasizes Shader programming and finishes with group projects in real-time
rendering. As a basis for teaching this course the lecturer uses the books [AHH11]
and [L12], and takes background and ideas from [AS12] and [BC12]. Shadow
algorithms are discussed in one 1.5 hour lecture together with other global
illumination topics for real-time rendering (such as caustics and ambient occlusion),
so time is limited and should be used well. Because a profound understanding of
algorithm and math underlying a real-time graphics implementation is of essence to
us, we stop each lecture for one or two suitable In-Class exercises. It took us some
thought to invent two short In-Class Exercises for Shadow algorithms – thus we
decided to share these with the community.

2.	 In-‐Class	 Exercise	 for	 Shadow	 Mapping	 Algorithms	

This exercise (ShadowMapExercise.pdf) can be downloaded from www.uni-
paderborn.de/cs/vis. Here is a step-by-step explanation.

The Shadow Mapping algorithm has been proposed first by Williams [W78]. In the
lecture, we use a modern description of the algorithm as it follows the books [AHH11]
or [L12]. The idea is based on the fact that –considering one ray of light - object
points in shadow are farther away from the light source than illuminated object points.
Setting the viewpoint of a camera into the light position, all visible object points are lit
and non-visible object points are in shadow. We store the distances between the light
source and visible points (from the light source) in an array (called “shadow map”) for
later use. From the view of the camera, for each visible object point (such as vertices
va and vb in Figure 1) we can calculate the distance to the light source and compare it
to the recovered distance value stored in our array. As we can see in Figure 1, the
distance for object point va to the light source will be the same as recovered in the
shadow map. The distance for object point vb will be longer than the value recovered
from the shadow map, indicating that it is in shadow. Let us use this idea for the
following procedure and accompany it with the first In-Class exercise:

Figure 1. Basic idea of Shadow Mapping: The shadow map z contains distances from object points to light source.
Two vertices va and vb are seen from the camera. Vertex va has the same distance to the light source as
recovered from the shadow map at the corresponding location (s,t). Vertex vb has a longer distance to the light
source than recovered from the shadow map at the corresponding location (s,t). The shadow mapping algorithm
therefore decides that vb is in shadow and va is not in shadow.

First render the scene from the position of the light source. This results in the
projection of each object point p onto the near plane of the light using the
ModelViewProjection Matrix ML:

Only keep the content of the z-buffer and store it in a map (=shadow map). Every
other result of the rendering process, e.g. color buffer, is dispensable. Let’s take a
look at this 2d shadow map and name it z(s,t): The shadow map z(s,t) now contains
depth values z (=distances between light source and lit object points) at each equally
spaced 2d location (s,t), where (s,t) describe the sampling rate of this rendering
procedure.

ML ⋅ p = pL = (px
L, py

L, pz
L)T

Figure 2. A cube is rendered from the view of the light source; the resulting content of the z-buffer is saved in a
“shadow map”.

For the set-up of Figure 2, students can fill one line of the shadow map z(at the
various
 by looking up the distances from the near plane (relative to the light source):

z 1 2 3 4 5 6 7 8
t 1 2 3 4 5 6 7 8

resulting in (or similar to):

z 34 37 39 21 24 27 30 62
t 1 2 3 4 5 6 7 8

Next render the scene from the position of the camera. This will result in filling the
z-buffer (=distance between camera and visible object points) and the color buffer for
our rendering process. We can calculate the distance from each visible point q to the
light source by using

(where S is a scaling matrix ensuring the correct scaling) and compare this distance
(call it z’) with the previously stored z values in the shadow map. If the distances
correspond, the visible point is lit, if the new value z’ is larger than z, point q is in
shadow.

S ⋅ML ⋅q = qL = (qx
L,qy

L,qz
L)T

Figure 3. The cube is now rendered from the position of the camera. Object points visible from the camera are
equally spaced in the corresponding image plane.

The setup in Figure 3 shows eight equally spaced image/object locations (a…. h)
when rendering our cube. For one line of the current color buffer we fill in the
distances z’ from object point to light source by looking them up in Figure 3.

z' a b c d e f g h

We also have to remember the corresponding index t of the shadow map in relation
to the new spacing in image (camera) space:

a b c d e f g h
t(a) t(b) t(c) t(d) t(e) t(f) t(g) t(h)

 Resulting in the following z’ values and corresponding shadow map index (locations
t):

z' 23 26 29 37 54 57 60 64
t 4 6 7 7 6 7 8 8

Next compare the values z and z’ and make a shadow decision. Where z= z’ we
expect lit points and where z < z’ we expect shadow points for this indicates that
there is another object point closer to the light source than the current object point
under investigation.

This final decision can be expressed by the Heaviside function

H (z(t)− z ') =
1, for(z− z ') ≥ 0
0, for(z− z ')< 0

#
$
%

&%

If H(z(t)-z’) = 0 (or slightly larger than zero because of inaccuracies), then q lies in
shadow, if H(z(t)-z’) is negative, q is lit.

For the next two lines of exercise we compare z(t) and z’, but remember to use the
corresponding shadow map index t resulting in

z(t) - z' -2 1 1 -7 -27 -27 2 -2
Corresponding
index in image
buffer (a…h)

a b c d e f g h

Corresponding
index in shadow
map (t)

4 6 7 7 6 7 8 8

Shadow decision
H(z(t)-z’)

0 1 1 0 0 0 1 0

s(hadowed) or
lit?

s lit lit s s s lit s

Comparing this result with Figure 3 we see that the decision is not correct for image
index b and h. This phenomenon is called self-shadow aliasing and is treated in the
next section.

Improvement of self-shadow aliasing. One can easily imagine that the precise
comparison of z and z’ leads to errors. Each z entry in the shadow map represents
an area in object space whose size is dependent on the applied sampling rate during
the first rendering from the light source. Depending on where p or where q are
located within this area, the distance of q might be larger than the distance of p to the
light source and erroneously determine shadow for this location. This so called self-
shadowing can be corrected by adding a constant bias to the entries of the shadow
map. Therefore allow students to add a constant bias c (e.g. c=2) to the entries of the
shadow map, resulting in a comparison z(t) + c-z'

z(t) +2 - z' 0 3 3 -5 -25 -25 4 0

and a new (correct) shadow decision

H(z(t) +2 - z') 1 1 1 0 0 0 1 1
s(hadowed) or
lit?

lit lit lit s s s lit lit

The solution sheet (ShadowMapSolution.pdf) can also be downloaded from www.uni-
paderborn.de/cs/vis.

This exercise is easy to extend by other algorithm improvements, e.g. the
percentage-closer filtering [AHH11].

3.	 In-‐Class	 Exercise	 for	 Shadow	 Volume	 Algorithms	

This exercise (ShadowVolumesExercise.pdf) can be downloaded from www.uni-
paderborn.de/cs/vis. Here is the step-by-step explanation.

The Shadow Volume Algorithm originates by Franklin Crow, 1977 [C77]. In the
lecture, we use a modern description of the algorithm as it follows the books [AHH11]
or [L12]. Modern hardware increases the speed of this algorithm so that it is now in
common use for dynamic real-time shadowing. The basic idea behind this algorithm
is that the shadow of an object is constructed as a volume by extruding the object’s
silhouette (with respect to a light source) away from this light source (grey area
extruding from the green object in Figure 4).

Figure 4. A light source lights a green object that will block out light for other objects within its “shadow volume”.
(The shadow volumes for the orange and blue object are not drawn in this Figure.) A line of sight from the camera
will intersect a front facing polygon of the shadow volume when rendering a point on the blue object; a line of sight
from the camera will intersect a front facing and a back facing polygon of the shadow volume when rendering a
point on the orange object. Intersecting (crossing) a front facing polygon adds one to the stencil buffer,
intersecting a backfacing polygon subtracts one to the stencil buffer, leaving the stencil buffer with +1 for the
corresponding image location of the object point on the blue object and with 0 for the corresponding image
location of the object point on the orange object.

Those parts of other objects lying inside this object’s shadow volume are in shadow.
For a typical scene, many shadow volumes will exist. A ray of sight sent out from the
camera to an object point might cross a shadow volume's surface on entering and
exiting the volume. When increasing a counter on entering and decreasing it on
exiting the volume, the counter will have a non-zero value if the ray ends on a
shadowed object. This procedure can be realized by (non-visibly) drawing the
volume's front and back faces and using the stencil-buffer as the counter.

The classic algorithm called “z-pass Shadow Volume algorithm” consists of two parts:

Part 1: initialize all buffers (including the stencil buffer) and render the scene as
seen from the camera using only ambient illumination of the light source (this makes
the resulting color buffer look like a scene in full shadow). Keep the depth (z) buffer.

Part 2: Set the depth test to pass for z values smaller and equal values than in the
depth buffer. Now in a first pass render all the front faces of the shadow volumes
without drawing to the color buffer or changing the depth buffer. Instead, this and the
next rendering pass will aid only in filling the stencil buffer. Whenever a depth test is
performed the stencil buffer is increased if the test is passed. Nothing happens if the
depth test fails.

Figure 5. Two objects and their shadow volumes in front of a surface being rendered into the image buffer with
image locations a through e.

Applying this procedure, students can use Figure 5 (a) to track the intersection of the
camera rays and the volume faces to determine the changes to the stencil buffer:

Change in stencil buffer… +2 +2 +1 +1 +1
… at location a b c d e

Now render the back faces in a second pass, and decrease the value in the stencil
buffer whenever the depth test is being passed. Again the changes to the stencil
buffer are recorded.

Change in stencil buffer -1 -1 -1 0 0

By summing up the changes the resulting state of the stencil can be computed.

Content of stencil buffer 1 1 0 1 1

Now in a final rendering pass of the objects in the scene (where only fragments with
stencil value 0 are being lit) renders the scene correctly. From the stencil buffer the
students can derive the shadow decision for each pixel.

s(hadowed) or lit? s s lit s s

This works well when the camera is outside any shadow volume. When the camera's
near plane intersects the shadow volume, this algorithm fails. The students
reproduce this problem by repeating the algorithm using a slightly changed camera
position (Figure 5 b) and observe the wrong results in the final shadow decision:

Change after front face 1 1 0 0 0

rendering
Change after back face
rendering

-1 -1 -1 0 0

Resulting stencil buffer 0 0 -1 0 0
s(hadowed) or lit? lit lit s lit lit

Changes to the original “z-pass” algorithm lead to a camera position robust solution,
called the “z-fail Shadow Volume algorithm”. A robust solution [EK03] demands
several changes in the approach: first, the silhouette's extrusion has to be changed to
extrude the vertices (mathematically) onto the camera's far plane, by using a special
projection matrix. This ensures that all normal geometry resides inside the shadow
volume. Second, a cap for the shadow volume has to be added onto the back face –
and front face! For our example, Figure 6 points out the relevant front faces, back
faces and back face cap.

Figure 6. For the Z-Fail algorithm, the silhouette's extrusion has to be changed to include a cap at the end of the
shadow volume. This figure emphasizes the relevant front faces (f”), back faces and back caps (“b”) for rendering
a surface from the camera’s point of view.

Also the drawing decision and the stencil operation have to be changed to the
following:

Part 1: initialize all buffers (including the stencil buffer) and render the scene as
seen from the camera using only ambient illumination of the light source. Keep the
depth (z) buffer.

Part 2: Set the depth test to pass for z values smaller than in the depth buffer. Now in
a first pass render the front faces of the shadow volumes without drawing to the
color buffer or changing the depth buffer. Whenever a depth test is performed the
stencil buffer is decreased if the test fails. Again, the changes can be tracked by
checking the camera ray in Figure 5(c). This time, however, the scene behind the
visible geometry has to be considered, resulting in

Change in stencil buffer… 0 0 -1 0 0

… at location a b c d e

Now render the back faces in a second pass, and increase the value in the stencil
buffer whenever the depth test fails.

Change in stencil buffer +1 +1 +1 +1 +1

The resulting stencil buffer and shadow decision demonstrate how the z-fail method
solves the preceding problems.

Content of stencil buffer 1 1 0 1 1
s(hadowed) or l(it)? s s lit s s

The solution sheet (ShadowVolumesSolution.pdf) can also be downloaded from
www.uni-paderborn.de/cs/vis.

4.	 Discussion	

Students produce a final (group) project for this course, where they are free to
construct an animation of a virtual world of their choice and making. They are being
graded for the real-time visual effects they implement and the models they generate
for their world. They are free to use additionally imported models to fill their world as
they see suited. In 2012 we had 19 students submitting 6 projects (with roughly 3
students per group), only one project group implemented a shadow algorithm; in
2013 we had 8 group projects, again only one project included a shadow algorithm;
in 2014 (when we implemented the In-Class shadow exercises) we had 26 projects,
where 10 projects implemented a real-time shadow algorithm.

Over the last years we have submitted the best of the group projects resulting from
this course to ACM SIGGRAPH’s “Faculty Submitted Student Work” Competition.
The following two snapshots (Figure 7 and Figure 8) are from such submitted
animations.

Figure 7: Student group project “The End of the World” showing shadow of moving ball next to many other real-
time effects, such as blooming or particle systems.

Figure 8: Student group project “Sheep at a Picnic” showing a candle flame throwing shadows of objects on table.

Acknowledgement: Peter Wagener, Stanislaw Eppinger, Tobias Rojahn, Thomas
Löcke, Kathlén Kohn for their projects; Stephan Arens as Lab coordinator; Mike
Bailey and Scott Owen for Review.

References	

[AHH11] Tomas Akenine-Möller, Eric Haines and Naty Hoffman, Real-Time
Rendering, Third Edition. Boca Raton, FL, Taylor & Francis, 2011.

[AS12] Edward, Angel and Dave Shreiner, Interactive Computer Graphics: A Top-
down Approach with Shader-based OpenGL, 6. Boston, MA, Addison-Wesley, 2012.

[BC12] Mike Bailey and Steve Cunningham, Graphics Shaders: Theory and Practice,
2nd. Boca Raton, FL, Taylor & Francis, 2012.

[C77] Franklin C. Crow. 1977. Shadow algorithms for computer graphics in
Proceedings of the 4th annual conference on Computer graphics and interactive
techniques (SIGGRAPH '77). New York, NY, ACM, 1977, pp. 242-248.

[EK03] Cass Everitt and Mark J. Kilgard (2003), Practical and robust stenciled
shadow volumes for hardware-accelerated rendering. In: arXiv:cs/0301002

[L12] Eric Lengyel, Mathematics for 3D Game Programming and Computer
Graphics, Third Edition. Boston, MA, Cengage Learning, 2012.

[W78] Lance Williams. 1978. Casting curved shadows on curved surfaces in
Proceedings of the 5th annual conference on Computer graphics and interactive
techniques (SIGGRAPH '78). New York, NY, ACM, pp. 270-274.

