Zooming and Panning Around a Complex 2D Display

• Standard (Euclidean) geometry zooming forces much of the information off the screen
• This eliminates the context from the zoomed-in display
• This problem can be solved with *hyperbolic methods* if we are willing to give up Euclidean geometry
Usual Zooming in Euclidean Space

123,101 line strips
446,585 points
Zooming in Polar Hyperbolic Space
Polar Hyperbolic Equations

Overall theme: something divided by something a little bigger

\[R' = \frac{R}{R+K} \]

\((X,Y) \)

\[X' = R' \cos \Theta' \]
\[Y' = R' \sin \Theta' \]

\[\Theta' = \Theta \]

Because

\[R' = \frac{R}{R + K} \]

then:

\[\lim_{K \to 0} R' = 1 \]
\[\lim_{K \to \infty} R' = 0 \]
Polar Hyperbolic Equations Don’t Actually Need to use Trig

\[R = \sqrt{X^2 + Y^2} \]

\[\Theta = \tan^{-1}\left(\frac{Y}{X}\right) \]

\[R' = \frac{R}{R + K} \]

Coordinates moved to outer edge when \(K = 0 \)

Coordinates moved to center when \(K = \infty \)

\[X' = R' \cos \Theta = \frac{R}{R + K} \times \frac{X}{R} = \frac{X}{R + K} \]

\[Y' = R' \sin \Theta = \frac{R}{R + K} \times \frac{Y}{R} = \frac{Y}{R + K} \]
Cartesian Hyperbolic Equations – Treat X and Y Independently

Polar

\[
\begin{align*}
X' &= \frac{X}{R + K} \\
Y' &= \frac{Y}{R + K}
\end{align*}
\]

Coordinates moved to outer edge when \(K = 0 \)

Cartesian

\[
\begin{align*}
X' &= \frac{X}{\sqrt{X^2 + K^2}} \\
Y' &= \frac{Y}{\sqrt{Y^2 + K^2}}
\end{align*}
\]

Coordinates moved to center when \(K = \infty \)
Zooming in Cartesian Hyperbolic Space
The Problem with T-Intersections
The Problem with T-Intersections

Your code computes the hyperbolic transformation here and here, and OpenGL draws a straight line between them. But, this point had its hyperbolic transformation computed separately, and doesn’t match up with the straight line.

This kind of situation is called a T-intersection, and crops up all the time in computer graphics. 😞
A Solution to the T-Intersection Problem

Break this line up into several (many?) sub-pieces, and perform the Hyperbolic Transformation on each intermediate point.

\[P(t) = (1 - t)P_0 + tP_1 \]

\[t = 0., .01, .02, .03, \ldots \]

This makes that straight line into a curve, as it should be. But, how many line segments should we use?
A More Elegant Approach is to Recursively Subdivide

```c
void DrawHyperbolicLine( P0, P1 )
{
    Compute point \( A = \frac{P_0 + P_1}{2} \).
    Convert point A to Hyperbolic Coordinates, calling it A’.
    Convert \( P_0 \) and \( P_1 \) to Hyperbolic Coordinates \( P_0’, P_1’ \).
    Compute point \( B’ = \frac{P_0’ + P_1’}{2} \).
    Compare A’ and B.
    if( they are “close enough” )
    {
        Draw the line \( P_0’-P_1’ \)
    }
    else
    {
        DrawHyperbolicLine( P0, A );
        DrawHyperbolicLine( A, P1 );
    }
}
```

Subdividing to render a curve correctly is a recurring theme in computer graphics.
Hyperbolic Corvallis (Streets, Buildings, Parks)

Kelley Engineering Center