
2/3/2011

1

Vertex Arrays and Vertex Buffer Objects

Mike Bailey

Oregon State University

mjb January 28, 2010

Oregon State University
Computer Graphics

The OpenGL Client-Server Model

ClientClient
Server

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

2

The Difference Between Vertex Arrays and Vertex Buffer Objects

• Both vertex arrays and vertex buffers do the same thing, so
functionally they are the same.

V t A li th h t (th “ li t”)• Vertex Arrays live on the host (the “client”).

• Vertex Buffers live on the graphics card (the “server).

mjb January 28, 2010

Oregon State University
Computer Graphics

Vertex Arrays: The Big Idea

• Store vertex coordinates and vertex attributes in arrays on the host (client).

• Every time you want to draw, transmit the arrays to the graphics card (server), along with
indices that tell what vertex numbers need to be connectedindices that tell what vertex numbers need to be connected.

• This way, each vertex only needs to be transformed once.

• It also results in fewer overall function calls (to glVertex3f(), for example).

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

3

GLfloat CubeVertices[][3] =
{

{ -1., -1., -1. },
{ 1., -1., -1. },
{ -1., 1., -1. },
{ 1., 1., -1. },

Vertex Arrays: Cube Example

32

76

{ 1., 1., 1. },
{ -1., -1., 1. },
{ 1., -1., 1. },
{ -1., 1., 1. },
{ 1., 1., 1. }

};

GLfloat CubeColors[][3] =
{

{ 0., 0., 0. },
GLuint CubeIndices[][4] =
{

0 1

4 5

mjb January 28, 2010

Oregon State University
Computer Graphics

{ }
{ 1., 0., 0. },
{ 0., 1., 0. },
{ 1., 1., 0. },
{ 0., 0., 1. },
{ 1., 0., 1. },
{ 0., 1., 1. },
{ 1., 1., 1. },

};

{ 0, 2, 3, 1 },
{ 4, 5, 7, 6 },
{ 1, 3, 7, 5 },
{ 0, 4, 6, 2 },
{ 2, 6, 7, 3 },
{ 0, 1, 5, 4 }

};

Vertex Arrays: Step #1 – Fill the Arrays

GLfloat Vertices[][3] =
{

{ 1., 2., 3. },
{ 4 5 6 }{ 4., 5., 6. },
. . .

};

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

4

Vertex Arrays: Step #2 – Activate the Array Types That You Will Use

glEnableClientState(type)

where type can be any of:

GL_VERTEX_ARRAY
GL_COLOR_ARRAY
GL_NORMAL_ARRAY
GL_SECONDARY_COLOR_ARRAY
GL_TEXTURE_COORD_ARRAY

• Call this as many times as you need to enable all the arrays that you will need.

mjb January 28, 2010

Oregon State University
Computer Graphics

Call this as many times as you need to enable all the arrays that you will need.

• There are other types, too.

• To deactivate a type, call:

glDisableClientState(type)

Vertex Arrays: Step #3 – Specify the Data

glVertexPointer(size, type, stride, array);

glColorPointer(size, type, stride, array);

glNormalPointer(type, stride, array);

glSecondaryColorPointer(size, type, stride, array);

glTexCoordPointer(size, type, stride, array);

size is the spatial dimension, and can be: 2, 3, or 4

GL_SHORT
GL_INT
GL_FLOAT
GL_DOUBLE

type can be:

mjb January 28, 2010

Oregon State University
Computer Graphics

stride is the byte offset between consecutive entries in the array (0 means tightly packed)

array is the name of the corresponding data array

2/3/2011

5

Vertex Arrays: Step #4 – Specify the Connections

glBegin(GL_TRIANGLES);
glArrayElement(0);
glArrayElement(1);

23
List the vertices individually:

g y ()
glArrayElement(2);

glArrayElement(0);
glArrayElement(3);
glArrayElement(4);

glEnd();

0
14

Or, list the vertices explicitly:

mjb January 28, 2010

Oregon State University
Computer Graphics

GLuint TriIndices[][3] =
{

{ 0, 1, 2 },
{ 0, 3, 4 }

};
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, TriIndices);

Or, list the vertices explicitly:

GLfloat CubeVertices[][3] =
{

{ -1., -1., -1. },
{ 1., -1., -1. },
{ -1., 1., -1. },
{ 1., 1., -1. },

Vertex Arrays: Cube Example

32

76

{ 1., 1., 1. },
{ -1., -1., 1. },
{ 1., -1., 1. },
{ -1., 1., 1. },
{ 1., 1., 1. }

};

GLfloat CubeColors[][3] =
{

{ 0., 0., 0. },
GLuint CubeIndices[][4] =
{

0 1

4 5

mjb January 28, 2010

Oregon State University
Computer Graphics

{ }
{ 1., 0., 0. },
{ 0., 1., 0. },
{ 1., 1., 0. },
{ 0., 0., 1. },
{ 1., 0., 1. },
{ 0., 1., 1. },
{ 1., 1., 1. },

};

{ 0, 2, 3, 1 },
{ 4, 5, 7, 6 },
{ 1, 3, 7, 5 },
{ 0, 4, 6, 2 },
{ 2, 6, 7, 3 },
{ 0, 1, 5, 4 }

};

2/3/2011

6

Vertex Arrays: Cube Example

mjb January 28, 2010

Oregon State University
Computer Graphics

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, CubeVertices);
glColorPointer(3, GL_FLOAT, 0, CubeColors);
glBegin(GL_QUADS);

glArrayElement(0);
glArrayElement(2);
glArrayElement(3);
glArrayElement(1);
glArrayElement(4);

Vertex Arrays:
Cube Example – glArrayElement() calls

glArrayElement(4);
glArrayElement(5);
glArrayElement(7);
glArrayElement(6);
glArrayElement(1);
glArrayElement(3);
glArrayElement(7);
glArrayElement(5);
glArrayElement(0);
glArrayElement(4);
glArrayElement(6);
lA El t(2)

mjb January 28, 2010

Oregon State University
Computer Graphics

glArrayElement(2);
glArrayElement(2);
glArrayElement(6);
glArrayElement(7);
glArrayElement(3);
glArrayElement(0);
glArrayElement(1);
glArrayElement(5);
glArrayElement(4);

glEnd();

2/3/2011

7

glEnableClientState(GL_VERTEX_ARRAY);

Vertex Arrays:
Cube Example – glDrawElements() call

glEnableClientState(GL_COLOR_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, CubeVertices);
glColorPointer(3, GL_FLOAT, 0, CubeColors);

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_INT, CubeIndices);

mjb January 28, 2010

Oregon State University
Computer Graphics

Vertex Buffers: The Big Idea

• Store vertex coordinates and vertex attributes in arrays on the graphics card (server).

• Optionally store the connections on the graphics card too.

• Every time you want to draw, the vertex arrays are already on the graphics card, possibly
along with indices that tell what vertex numbers need to be connected. If the indices are
not already there, send them.

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

8

A Little Background -- the OpenGL Rendering Context

The OpenGL Rendering Context contains all the characteristic information
necessary to produce an image from geometry. This includes
transformations, colors, lighting, textures, where to send the display, etc.

Color Transf.Lighting Color

Display
Dest.Context

Texture0 Texture1
Element

Array Buffer
Data Array

Buffer

mjb January 28, 2010

Oregon State University
Computer Graphics

Some of these characteristics have a default value (e.g., lines are white, the
display goes to the screen) and some have nothing (e.g., no textures exist)

More Background – What is an OpenGL “Object”?

An OpenGL Object is pretty much the same as a C++, C#, or Java
object: it encapsulates a group of data items and allows you to treat
them as a single whole. For example, a Vertex Buffer Object could be
defined in C++ by:

class VertexBufferObject
{

enum dataType;
void *memStart;
int memSize;

};

Then, you could create any number of Vertex Buffer Object instances,

mjb January 28, 2010

Oregon State University
Computer Graphics

each with its own characteristics encapsulated within it. When you want to
make that combination current, you just need to bring in (“bind”) that entire
object. When you bind an object, all of its information comes with it.

2/3/2011

9

More Background – How do you Create an OpenGL “Object”?

In C++, objects are pointed to by their address.

In OpenGL, objects are pointed to by an unsigned integer handle. You can
assign a value for this handle yourself (not recommended), or have OpenGL g y (), p
generate one for you that is guaranteed to be unique. For example:

GLuint bufA;

glGenBuffers(1, &bufA);

This doesn’t actually allocate memory for the buffer object yet, it just
acq ires a niq e handle To allocate memor o need to bind this

mjb January 28, 2010

Oregon State University
Computer Graphics

acquires a unique handle. To allocate memory, you need to bind this
handle to the Context.

More Background -- “Binding” to the Context

The OpenGL term “binding” refers to “attaching” or “docking” (a metaphor which I
find to be more visually pleasing) an OpenGL object to the Context. You can then
assign characteristics, and they will “flow” through the Context into the object.

Vertex Buffer
Object

Context
Color Transf.Lighting Color

Texture0 Texture1
Element

Array Buffer

glBindBuffer(bufA, GL_ARRAY_BUFFER);
glBufferData(GL_ARRAY_BUFFER, numBytes, data, usage);

Data Array
Buffer

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

10

More Background -- “Binding” to the Context

When you want to use that Vertex Buffer Object, just bind it again. All of the
characteristics will then be active, just as if you had specified them again.

Vertex Buffer
Object

Color TransfLighting Color

Context
Texture0 Texture1

Element
Array Buffer

Data Array
Buffer

mjb January 28, 2010

Oregon State University
Computer Graphics

glBindBuffer(bufA, GL_ARRAY_BUFFER);

Vertex Buffers: Putting Data in the Buffer Object

glBufferData(type, numBytes, data, usage);

type is the type of buffer object this is:type is the type of buffer object this is:
GL_ARRAY_BUFFER to store floating point vertices, normals, colors, and texture coordinates

GL_ELEMENT_ARRAY_BUFFER to store integer vertex indices to connect for drawing

numBytes is the number of bytes to store in all. Not the number of numbers,
but the number of bytes!

data is the memory address of (i e pointer to) the data to be transferred to the

mjb January 28, 2010

Oregon State University
Computer Graphics

data is the memory address of (i.e., pointer to) the data to be transferred to the
graphics card. This can be NULL, and the data can be transferred later.

2/3/2011

11

Vertex Buffers: Putting Data in the Buffer Object

glBufferData(type, numbytes, data, usage);

usage is a hint as to how the data will be used: GL xxx yyyusage is a hint as to how the data will be used: GL_xxx_yyy

where xxx can be:
STREAM this buffer will be written lots
STATIC this buffer will be written seldom and read seldon
DYNAMIC this buffer will be written often and used often

and yyy can be:
DRAW this buffer will be used for drawing
READ this buffer will be copied into

mjb January 28, 2010

Oregon State University
Computer Graphics

t s bu e be cop ed to
COPY not a real need for now, but someday…

Vertex Buffers: A Choice of Terminology

The architects of OpenGL had a choice at this point They could let vertex buffer objectsThe architects of OpenGL had a choice at this point. They could let vertex buffer objects
use the same terminology as vertex arrays, or they could invent new terminology.

They decided to re-use the same terminology to make conversion from vertex arrays to
vertex buffers that much easier. Don’t take the use of the word Client seriously here!

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

12

Vertex Buffers: Step #1 – Fill the Arrays

GLfloat Vertices[][3] =
{

{ 1., 2., 3. },
{ 4 5 6 }{ 4., 5., 6. },
. . .

};

mjb January 28, 2010

Oregon State University
Computer Graphics

Vertex Buffers: Step #2 – Create the Buffers and Fill Them

glGenBuffers(1, &bufA);

glBindBuffer(bufA, GL_ARRAY_BUFFER);

glBufferData(GL_ARRAY_BUFFER, 3*sizeof(float)*numVertices, Vertices, GL_DYNAMIC_DRAW);

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

13

Vertex Buffers: Step #3 – Activate the Array Types That You Will Use

glEnableClientState(type)

where type can be any of:

GL_VERTEX_ARRAY
GL_COLOR_ARRAY
GL_NORMAL_ARRAY
GL_SECONDARY_COLOR_ARRAY
GL_TEXTURE_COORD_ARRAY

• Call this as many times as you need to enable all the arrays that you will need.

mjb January 28, 2010

Oregon State University
Computer Graphics

Call this as many times as you need to enable all the arrays that you will need.

• There are other types, too.

• To deactivate a type, call:

glDisableClientState(type)

Vertex Buffers: Step #4 – To Draw, Bind the Buffers

glBindBuffer(bufA, GL_ARRAY_BUFFER);

glBindBuffer(bufB, GL ELEMENT ARRAY BUFFER);g d u e (bu , G _ _ _ U);

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

14

Vertex Buffers: Step #5 – Specify the Data

glVertexPointer(size, type, stride, offset);

glColorPointer(size, type, stride, offset);

glNormalPointer(type, stride, offset);

glSecondaryColorPointer(size, type, stride, offset);

Vertex Data

Color Data

glTexCoordPointer(size, type, stride, offset);

size is the spatial dimension, and can be: 2, 3, or 4

GL_SHORT
GL_INT
GL_FLOAT
GL_DOUBLE

type can be:

Vertex Data

Color Data

Vertex Data

Color Data

Vertex Data

Color Data

vs.

mjb January 28, 2010

Oregon State University
Computer Graphics

stride is the byte offset between consecutive entries in the array (0 means tightly packed)

offset, the 4th argument, is no longer an array memory location. It is the byte offset from
the start of the data array buffer where the first element of this part of the data lives.

Vertex Buffers: Step #6 – Specify the Connections

glBegin(GL_TRIANGLES);
glArrayElement(0);
glArrayElement(1);

23
List the vertices individually:

g y ()
glArrayElement(2);

glArrayElement(0);
glArrayElement(3);
glArrayElement(4);

glEnd();

0
14

List the vertices together:

mjb January 28, 2010

Oregon State University
Computer Graphics

GLuint TriIndices[][3] =
{

{ 0, 1, 2 },
{ 0, 3, 4 }

};
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_INT, TriIndices);

2/3/2011

15

static GLfloat CubeVertices[][3] =
{

{ -1., -1., -1. },
{ 1., -1., -1. },
{ -1., 1., -1. },
{ 1., 1., -1. },

Vertex Buffers: Cube Example

32

76

{ 1., 1., 1. },
{ -1., -1., 1. },
{ 1., -1., 1. },
{ -1., 1., 1. },
{ 1., 1., 1. }

};

static GLfloat CubeColors[][3] =
{

{ 0., 0., 0. },
static GLuint CubeIndices[][4] =
{

0 1

4 5

mjb January 28, 2010

Oregon State University
Computer Graphics

{ }
{ 1., 0., 0. },
{ 0., 1., 0. },
{ 1., 1., 0. },
{ 0., 0., 1. },
{ 1., 0., 1. },
{ 0., 1., 1. },
{ 1., 1., 1. },

};

{ 0, 2, 3, 1 },
{ 4, 5, 7, 6 },
{ 1, 3, 7, 5 },
{ 0, 4, 6, 2 },
{ 2, 6, 7, 3 },
{ 0, 1, 5, 4 }

};

Vertex Buffers: Cube Example

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

16

glEnableClientState(GL_VERTEX_ARRAY);
glEnableClientState(GL_COLOR_ARRAY);
glVertexPointer(3, GL_FLOAT, 0, (Gluchar*) 0);
glColorPointer(3, GL_FLOAT, 0, (Gluchar*) (3*sizeof(float)*numVertices));
glBegin(GL_QUADS);

glArrayElement(0);
glArrayElement(2);
glArrayElement(3);
glArrayElement(1);
glArrayElement(4);

Vertex Data

Color Data

glArrayElement(4);
glArrayElement(5);
glArrayElement(7);
glArrayElement(6);
glArrayElement(1);
glArrayElement(3);
glArrayElement(7);
glArrayElement(5);
glArrayElement(0);
glArrayElement(4);
glArrayElement(6);
lA El t(2)

Vertex Buffers:
Cube Example –

glArrayElement() calls

mjb January 28, 2010

Oregon State University
Computer Graphics

glArrayElement(2);
glArrayElement(2);
glArrayElement(6);
glArrayElement(7);
glArrayElement(3);
glArrayElement(0);
glArrayElement(1);
glArrayElement(5);
glArrayElement(4);

glEnd();

glArrayElement() calls

glEnableClientState(GL_VERTEX_ARRAY);

Vertex Buffers:
Cube Example – glDrawElements() call

glEnableClientState(GL_COLOR_ARRAY);

glVertexPointer(3, GL_FLOAT, 0, (Gluchar*) 0);
glColorPointer(3, GL_FLOAT, 0, (Gluchar*) (3*sizeof(float)*numVertices));

glDrawElements(GL_QUADS, 24, GL_UNSIGNED_INT, (Gluchar*) 0);

mjb January 28, 2010

Oregon State University
Computer Graphics

2/3/2011

17

float * vertexArray = glMapBuffer(GL_ARRAY_BUFFER, usage);

Vertex Buffers: Re-writing Data into a Vertex Buffer

usage is a hint as to how the data will be used:

GL_READ_ONLY the vertex data will be read from, but not written to
GL_WRITE the vertex data will be written to
GL_READ_WRITE the vertex data will be read from and written to

You can now use vertexArray[] like any other floating-point array.

mjb January 28, 2010

Oregon State University
Computer Graphics

glUnMapBuffer(GL_ARRAY_BUFFER);

When you are done, be sure to call:

