
mjb – February 15, 2006 OpenGL Picking 1

OpenGL Picking Made Easy

Overview

In science and engineering 3D visualization applications, it is useful for the user to point to
something and have the program figure out what is being pointed to. This is called picking.

You can imagine how you could do this in software. You would do all of the transformations
yourself and figure out where each object ends up being drawn on the screen and then check its
closeness to the cursor. The good news is that this can be done. The bad news is that none of us
wants to do it, and it would be painfully slow if we did.

Mercifully, OpenGL allows the hardware to help us out. The strategy is simple:

1. Tell the hardware that we are in picking (“selection”) mode.

2. Ask the hardware to pretend it is drawing the scene. Go through all the motions, just

don’t actually color any pixels.

3. As part of drawing the scene, we occasionally give the hardware “names” for the objects

we are drawing.

4. Whenever the hardware finds that it would have colored a pixel within a certain tolerance

of the cursor, it returns to us the object “name” that it is currently holding. This tells you
what set of drawn objects must have passed near the cursor.

5. Tell the hardware that we are back in drawing (“render”) mode.

Setup

Let’s look at all the steps in detail. The first step is to setup some things in the #defines. This
typically includes a picking tolerance (in pixels) and how large to make the array that the hardware
will use to record the names that it finds upon a successful pick:

/* picking tolerance in pixels: */

#define PICK_TOL 10.

/* how big to make the pick buffer: */

#define PICK_BUFFER_SIZE 256

Next, declare the picking buffer and a way to keep track of the rendering mode in the global
variables:

unsigned int PickBuffer[PICK_BUFFER_SIZE]; /* picking buffer */

mjb – February 15, 2006 OpenGL Picking 2

int RenderMode; /* GL_RENDER or GL_SELECT */

InitGraphics()

In InitGraphics(), tell the hardware what picking array to use and how big it is. You must do
this after you create the window:

/* open the window and set its title: */

glutInitWindowSize(INIT_WINDOW_SIZE, INIT_WINDOW_SIZE);
glutInitWindowPosition(WIN_LEFT, WIN_BOTTOM);
GrWindow = glutCreateWindow(WINDOWTITLE);
glutSetWindowTitle(WINDOWTITLE);

 . . .

 /* setup the picking buffer: */

 glSelectBuffer(PICK_BUFFER_SIZE, PickBuffer);

Assigning Pick Names

Now comes the part that requires you to plan some strategy: assigning pick names. The names are
really unsigned 32-bit integer numbers that get passed down to the hardware during display. The
hardware will tell you what name(s) it is holding at the moment a pick occurs. Thus, use enough
unique names to establish the identity of the individual objects. For example:

 glLoadName(0);
 glutWireSphere(1.0, 15, 15);

 glLoadName(1);
 glutWireCube(1.5);

 glLoadName(2);
 glutWireCone(1.0, 1.5, 20, 20);

 glLoadName(3);
 glutWireTorus(0.5, 0.75, 20, 20);

would work nicely to distinguish four shapes. Note that you can have as many graphics objects
after a call to glLoadName() as you’d like. A pick on any of those objects, though, will return the
same name.

One thing to be aware of, however, is that a call to glLoadName() cannot be embedded in a
glBegin()-glEnd() pair. Thus, if you are displaying a collection of triangles, you cannot say:

glBegin(GL_TRIANGLES);
for(i = 0; i < NTRIS; i++)
{
 glLoadName(i);
 glVertex3f(Tris[i].x0, Tris[i],y0, Tris[i].z0);

mjb – February 15, 2006 OpenGL Picking 3

 glVertex3f(Tris[i].x1, Tris[i],y1, Tris[i].z1);
 glVertex3f(Tris[i].x2, Tris[i],y2, Tris[i].z2);
}
glEnd();

Instead, you must say:

for(i = 0; i < NTRIS; i++)
{
 glLoadName(i);
 glBegin(GL_TRIANGLES);

glVertex3f(Tris[i].x0, Tris[i],y0, Tris[i].z0);
 glVertex3f(Tris[i].x1, Tris[i],y1, Tris[i].z1);
 glVertex3f(Tris[i].x2, Tris[i],y2, Tris[i].z2);

glEnd();
}

The pick names can be more sophisticated (i.e., more complicated) than just a single name. The
name-holding place in the hardware is actually a stack, so multiple names can be pushed onto the
stack. This is useful for hierarchical situations such as:

 glLoadName(JAGUAR);
 glPushName(BODY);
 glCallList(JagBodyList);
 glPopName();

 glPushName(FRONT_LEFT_TIRE);
 glPushMatrix();
 glTranslatef(??, ??, ??);
 glCallList(TireList);
 glPopMatrix();
 glPopName();

 glPushName(FRONT_RIGHT_TIRE);
 glPushMatrix();
 glTranslatef(??, ??, ??);
 glCallList(TireList);
 glPopMatrix();
 glPopName();

 • • •

 glLoadName(YUGO);
 glPushName(BODY);
 glCallList(YugoBodyList);
 • • •

so that by looking at the 2 pick names that are returned, you know which car and what part of that
car was picked.

Let’s get ready to draw. Be sure that the program knows to startup in render mode, not picking
mode. So, in Reset():

 RenderMode = GL_RENDER;

Now, when the pick is triggered by a mouse button press:

mjb – February 15, 2006 OpenGL Picking 4

1. Set the mode to pick mode (GL_SELECT)

2. Call Display() to do the pretend drawing

3. Set the mode back to render mode (GL_RENDER)

4. Examine the picking array

mjb – February 15, 2006 OpenGL Picking 5

MouseButton()

In MouseButton(), do the following (you can find this code in the Samples directory in pick.c):

 if((ActiveButton & LEFT) && (status == GLUT_DOWN))
 {
 RenderMode = GL_SELECT;
 glRenderMode(GL_SELECT);
 Display();
 RenderMode = GL_RENDER;
 Nhits = glRenderMode(GL_RENDER);
#ifdef BUG_KLUDGE
 if(Nhits == 0)
 {
 RenderMode = GL_SELECT;
 glRenderMode(GL_SELECT);
 Display();
 RenderMode = GL_RENDER;
 Nhits = glRenderMode(GL_RENDER);
 }
#endif

 if(Debug)
 fprintf(stderr, "# pick hits = %d\n", Nhits);

 for(i = 0, index = 0; i < Nhits; i++)
 {
 nitems = PickBuffer[index++];
 zmin = PickBuffer[index++];
 zmax = PickBuffer[index++];
 if(Debug)
 {
 fprintf(stderr,
 "Hit # %2d: found %2d items on the name stack\n",
 i, nitems);
 fprintf(stderr, "\tZmin = 0x%0x, Zmax = 0x%0x\n",
 zmin, zmax);
 }

 for(j = 0; j < nitems; j++)
 {
 item = PickBuffer[index++];

 << item is one of your pick names >>
 << do something with it >>

 if(Debug)
 fprintf(stderr, "\t%2d: %6d\n", j, item);
 }
 }

 ActiveButton &= ~LEFT;
 glutSetWindow(GrWindow);
 glutPostRedisplay();
 }

if(Nhits == 0)
 {
 /* didn’t pick anything */

/* use the left mouse for rotation or scaling: */

 . . .

 }

mjb – February 15, 2006 OpenGL Picking 6

A Kludge for a Hardware Bug

Some of the TNT2-based graphics cards have a picking bug. You need to pick twice to get a pick
to register correctly. You can either click everything twice (pretty lame thing to have to do), or you
can add these lines into the MouseButton() code, as shown above::

 if(Nhits == 0)
 {
 RenderMode = GL_SELECT;
 glRenderMode(GL_SELECT);
 Display();
 RenderMode = GL_RENDER;
 Nhits = glRenderMode(GL_RENDER);
 }

mjb – February 15, 2006 OpenGL Picking 7

What’s In The Picking Array After a Pick Has Happened?

The elements of the picking array are organized as:

The zmin and zmax values are in an internal unsigned integer representation and are used to tell
which of the objects picked is closest to you. A low value of zmin or zmax is closer to you than a
high value.

• • •

nitems

zmax
zmin

List of
names on
the name

stack when
the pick

happened

nitems

zmax
zmin

List of
names on
the name

stack when
the pick

happened

One of these per
pick hit

‘nitems’ names
listed here

How many names
were on the stack
when this hit
occurred?

mjb – February 15, 2006 OpenGL Picking 8

Display()

Now, all we have to do it get Display() to do the right things. There are only a couple of steps
that change depending on whether we are picking or rendering:

 int viewport[4]; /* place to retrieve the viewport numbers */

 • • •

 dx = glutGet(GLUT_WINDOW_WIDTH);
 dy = glutGet(GLUT_WINDOW_HEIGHT);

 • • •

glMatrixMode(GL_PROJECTION);
 glLoadIdentity();

 if(RenderMode == GL_SELECT)
 {
 viewport[0] = xl;
 viewport[1] = yb;
 viewport[2] = d;
 viewport[3] = d;
 gluPickMatrix((double)Xmouse, (double)(dy - Ymouse),
 PICK_TOL, PICK_TOL, viewport);
 }

 << the call to glOrtho(), glFrustum(), or gluPerspective() goes here >>

 • • •

 /* init the picking buffer: */

 if(RenderMode == GL_SELECT)
 {
 glInitNames();
 glPushName(0xffffffff); /* a strange value */
 }

 /* draw the objects: */

 << your graphics drawing and pick name calls go here >>

 /* possibly draw the axes: */

 if(AxesOnOff == ON && RenderMode == GL_RENDER)
 glCallList(AxesList);

 /* swap the double-buffered framebuffers: */

 if(RenderMode == GL_RENDER)
 glutSwapBuffers();

mjb – February 15, 2006 OpenGL Picking 9

The only really tricky thing is this part:

 viewport[0] = xl;
 viewport[1] = yb;
 viewport[2] = d;
 viewport[3] = d;
 gluPickMatrix((double)Xmouse, (double)(dy - Ymouse),
 PICK_TOL, PICK_TOL, viewport);

This code looks at the location and size of your viewport, where the mouse is, and what picking
tolerance you wanted and changes your projection matrix so that this pick box region occupies the
full window. Thus, the hardware is going to check to see if anything gets through the clipping test
and thus gets drawn. If it does, then a pick occurred.

Note that the gluPickMatrix() line is written first in the program’s transformations because
we want this transformation to happen last after all other transformations are done.

Picking Tricks

1. Do not waste picking time looking at things you didn’t want to pick anyway. For example, if the
axes are not meant to ever be picked, do something like this:

if(AxesOnOff == ON && RenderMode == GL_RENDER)
 glCallList(AxesList);

2. Do not try to pick raster characters. It doesn’t work! I don’t know if this is by design or by
mistake, but allowing raster characters to be drawn at all during a Pick Display, will cause the
picking to think those characters were picked regardless of where you point the cursor. Do this:

if(RenderMode == GL_RENDER)
{

glDisable(GL_DEPTH_TEST);
glMatrixMode(GL_PROJECTION);
glLoadIdentity();
gluOrtho2D(0., 100., 0., 100.);
glMatrixMode(GL_MODELVIEW);
glLoadIdentity();
glColor3f(1., 1., 1.);
sprintf(str, " Nhots = %d", Nhits);
DoRasterString(1., 1., 0., str);

}

mjb – February 15, 2006 OpenGL Picking 10

3. Recognizing that the user will never see what is being drawn during a Pick Display, you can
draw something a different than what the user thinks he/she is seeing.

For example, a wireframe object normally cannot be picked in the empty space between the lines.
But, if you draw a solid version of the same thing during the Pick Display, then it will look like a
user’s pick in the empty space will get the wireframe object, even though you know it shouldn’t.
So, in Display() you could say:

if(RenderMode == GL_SELECT)

glCallList(SolidTorusList);
else

glCallList(WireTorusList);

Examples

(Yellow Square = where the cursor-surrounding pickbox was when the mouse button was clicked.)

Pick occurred because an object’s line was in the pickbox

mjb – February 15, 2006 OpenGL Picking 11

No pick occurred because no objects’ lines were in the pickbox

Pick occurred because an object’s solid representation was in the pickbox

mjb – February 15, 2006 OpenGL Picking 12

Two picks occurred because two object’s lines were in the pickbox

One pick occurred because it was selecting the closest object

