
1

Stereographics

Mike Bailey

mjb@cs.oregonstate.edu

mjb – January 27, 2011

Oregon State University
Computer Graphics

Oregon State University

Stereovision is not new –
It’s been in common use since the 1950s,

and sporadically even before that

mjb – January 27, 2011

Oregon State University
Computer Graphics

Life Magazine

Binocular Vision

In everyday living, part of our perception of depth comes from the slight difference
in how our two eyes see the world around us. This is known as binocular vision.
We care about this, and are discussing it, because stereo computer graphics can
be a great help in de-cluttering a complex 3D visualization scene.

mjb – January 27, 2011

Oregon State University
Computer Graphics

The Cyclops Model

In the world of computer graphics, the two eye views can be reconstructed using
standard projection mathematics. The simplest approach is the Cyclops Model. In
this model, the left and right eye views are obtained by rotating the scene plus and
minus what a Cyclops at the origin would see. Looking at everything from the top:

mjb – January 27, 2011

Oregon State University
Computer Graphics

The left eye view is obtained by rotating the scene an angle +Ø about the Y
axis. The right eye view is obtained by rotating the scene an angle -Ø about
the Y axis. In practice, a good value of Ø is 1-4˚.

The Vertical Parallax Problem

This seems too simple, and in fact, it is. This works OK if you are doing
orthographic projections, but if you use perspective, you will achieve a nasty
phenomenon called vertical parallax, as illustrated below:

A

mjb – January 27, 2011

Oregon State University
Computer Graphics

The fact that the perspective shortening causes points A and B to have different
vertical positions in the left and right eye views makes it very difficult for the eyes
to converge the two images. For perspective projections, we need a better way.

Same face seen from
different eye positions

B

The Vertical Parallax Problem

Why not just keep using orthographic projections? Mathematically this is fine, but

mjb – January 27, 2011

Oregon State University
Computer Graphics

Why not just keep using orthographic projections? Mathematically this is fine, but
in practice, the two depth cues, stereo and no-perspective, fight each other. This
will bring on an optical illusion. A good example of this is a simple cube, drawn
below using an orthographic projection:

Because of the use of stereographics, the binocular cues
will say that the Near face is closer to the viewer than is
the Far face. However, our visual experience says that the
only way a far object can appear the same size as a near
object is if it is, in fact, larger. Thus, your visual system will
perceive the Far face as being larger than the Near face,
when in fact they are the same size.

2

Diversion #1 – Specifying the Viewing Frustum

glFrustum(left, right, bottom, top, near, far);

void
FrustumZ(float left, float right, float bottom, float top, float znear, float zfar, float zproj)
{

if(zproj != 0.0)

The OpenGL glFrustum call can be used in place of gluPerspective:

Rather than having to specify the left, right, bottom, and top limits at the near clipping
plane (which is what glFrustum expects), let’s setup a way to specify those limits at a
particular distance in front of us. (This is derived using similar triangles.)

mjb – January 27, 2011

Oregon State University
Computer Graphics

if(zproj ! 0.0)
{

left *= (znear/zproj);
right *= (znear/zproj);
bottom *= (znear/zproj);
top *= (znear/zproj);

}

glFrustum(left, right, bottom, top, znear, zfar);
}

FrustumZ(-10., 10., -10., 10., .1, 100., 30.);

So, if you wanted to view a car from 30 feet away, you could say:

Diversion #2 – Where does a 3D Point Map in a 2D Window?

Take an arbitrary 3D point in the viewing volume. Place a plane parallel to the near
and far clipping planes at its Z value (i.e., depth in the frustum). The location of the
point on that plane shows proportionally where the 3D point will be perspective-
mapped from left to right in the 2D window.

mjb – January 27, 2011

Oregon State University
Computer Graphics

Two Side-by-side Perspective Viewing Volumes

The best stereographics work is done with perspective projections. To avoid the
vertical parallax problem, we keep both the left and right eyes looking straight ahead
so that, in the vertical parallax example shown before, points A and B will project
with exactly the same amount of shortening.

The left eye sees
h b d

The right eye sees
h b d

mjb – January 27, 2011

Oregon State University
Computer Graphics

The left eye view is obtained by translating the eye by -E in the X direction, which is actually
accomplished by translating the scene by +E instead. Similarly, the right eye view is obtained by
translating the scene by -E in the X direction. We now have a horizontal parallax situation, where
the same point projects to a different horizontal position in the left and right eye views.

Note that this is a situation, not a problem. The difference in the left and right eye views requires a
at least some horizontal parallax to work. You can convince yourself of this by alternately opening
and closing your left and right eyes. We just need a good way to control the horizontal parallax.

the box towards
the far right side
of its display

the box towards
the far left side of
its display

Two Side-by-side Perspective Viewing Volumes

We do this by defining a distance in front of the eye, z0p, to the plane of zero parallax, where
a 3D point projects to the same window location for each eye. To the viewer, the plane of
zero parallax will be the glass screen and objects in front of it will appear to live in the air in
front of the glass screen and objects behind this plane will appear to live inside the monitor.
The plane of zero parallax is handled by:

1. Set the distance from the eyes to the plane of zero parallax based on the location of the geometry and
the look you are trying to achieve.

2. Looking from the Cyclops eye at the origin, determine the left, right, bottom, and top boundaries of the
viewing window on the plane of zero parallax as would be used in a call to glFrustum() These can be

mjb – January 27, 2011

Oregon State University
Computer Graphics

viewing window on the plane of zero parallax as would be used in a call to glFrustum(). These can be
determined by knowing Z0p and the field-of-view angle Φ:

Two Side-by-side Perspective Viewing Volumes

mjb – January 27, 2011

Oregon State University
Computer Graphics

L0p = -Z0p * tan(ø/2)
R0p = Z0p * tan(ø/2)
B0p = -Z0p * tan(ø/2)
T0p = Z0p * tan(ø/2)

Cyclops eye:

Two Side-by-side Non-symmetric Perspective Viewing Volumes

Use the Cyclops’s left and right boundaries as the left and right boundaries for each eye,
even though the scene has been translated. In the left eye view, the boundaries must
then be shifted by +E to match the +E shift in the scene. In the right eye view, the
boundaries must be shifted by -E to match the -E shift in the scene.

mjb – January 27, 2011

Oregon State University
Computer Graphics

Left eye:
R0p = Z0p * tan(ø/2) + E
L0p = -Z0p * tan(ø/2) + E

Right eye:
R0p = Z0p * tan(ø/2) - E
L0p = -Z0p * tan(ø/2) - E

3

at
 z

n
ea

r,
 f

lo
at

 z
fa

r,
 f

lo
at

 z
0p

, f
lo

at
 e

ye
)

u
n

d
ar

ie
s

o
n

 z
0p

u
n

d
ar

ie
s

o
n

 z
0p

en
t

o
f

y
fo

v
an

g
le

w
 a

n
g

le
:

18
0.

)
/ 2

.)
;

s: o
m

e
fr

o
m

 t
h

e
as

p
ec

t
ra

ti
o

:

co
u

n
t:

o
f

th
e

z0
p

 p
la

n
e:

 t
o

p
, z

n
ea

r,
 z

fa
r,

 z
0p

)
;

te
 t

h
e

ey
e

tr
an

sl
at

io
n

:
mjb – January 27, 2011

Oregon State University
Computer Graphics

vo
id

S
te

re
o

p
er

sp
(

fl
o

at
 f

o
vy

,
fl

o
at

 a
sp

ec
t,

 f
lo

a
{

fl
o

at
 le

ft
, r

ig
h

t;
//

x
 b

o
u

fl
o

at
 b

o
tt

o
m

, t
o

p
;

//
y

b
o

u
fl

o
at

 t
an

fo
vy

;
//

ta
n

g
e

//
ta

n
g

en
t

o
f

th
e

y
fi

el
d

-o
f-

vi
e

w

ta
n

fo
vy

=
 t

an
(

fo
vy

*
(M

_P
I /

 1

//
to

p
 a

n
d

 b
o

tt
o

m
 b

o
u

n
d

ar
ie

s

to
p

 =
 z

0p
 *

 t
an

fo
vy

;
b

o
tt

o
m

 =
 -

to
p

;

//
le

ft
 a

n
d

 r
ig

h
t

b
o

u
n

d
ar

ie
s

co

ri
g

h
t

=
 a

sp
ec

t
*

to
p

;
le

ft
 =

 a
sp

ec
t

*
b

o
tt

o
m

;

//
ta

ke
 e

ye
 t

ra
n

sl
at

io
n

 in
to

 a
c

le
ft

 -
=

 e
ye

;
ri

g
h

t
-=

 e
ye

;

//
as

k
fo

r
a

w
in

d
o

w
 in

 t
er

m
s

 o

F
ru

st
u

m
Z

(
le

ft
, r

ig
h

t,
 b

o
tt

o
m

,

//
tr

an
sl

at
e

th
e

sc
en

e
o

p
p

o
s

it

g
lT

ra
n

sl
at

ef
(

-e
ye

,
0.

0,
 0

.0
)

;
}

An Example

Parallel viewing
stereo

mjb – January 27, 2011

Oregon State University
Computer Graphics

Left Right

Right Left

Cross-eye
viewing stereo

ESPN’s 3D camera

Panasonic’s 3D Camcorder

Acquiring Stereo Video

ESPN’s 3D camera

mjb – January 27, 2011

Oregon State University
Computer Graphics

ESPN s 3D camera

Quad-Buffered OpenGL

Remember double buffering, where you draw into the back buffer and display from the front
buffer? OpenGL actually has two back buffers and two front buffers, one for each eye. So, draw
the left eye view into GL_BACK_LEFT and the right eye view into GL_BACK_RIGHT. First you
need to tell GLUT that you are doing stereo graphics. In InitGraphics():

glutInitDisplayMode(GLUT_RGBA | GLUT_DOUBLE | GLUT_DEPTH | GLUT_STEREO);

Then go ahead and create the window as normal. After creating the window, you can also
expand it to be the full screen with:

glutFullScreen();

mjb – January 27, 2011

Oregon State University
Computer Graphics

In Display(), you need to clear both buffers:

glDrawBuffer(GL_BACK_LEFT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

glDrawBuffer(GL_BACK_RIGHT);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

Quad-Buffered OpenGL

for(int eye = 0; eye <= 1; eye++)
{

glMatrixMode(GL_PROJECTION);
glLoadIdentity();

if(eye == 0) // left eye view
{

glDrawBuffer(GL_BACK_LEFT);
Stereopersp(fovy, 1.0, znear, zfar, z0p, - eyesep);

}

In Display(), you also need to draw into both back buffers:

mjb – January 27, 2011

Oregon State University
Computer Graphics

}
else // right eye view
{

glDrawBuffer(GL_BACK_RIGHT);
Stereopersp(fovy, 1.0, znear, zfar, z0p, eyesep);

}

glMatrixMode(GL_MODELVIEW);
glLoadIdentity();

<< draw the 3D scene >>
}

glutSwapBuffers(); // this goes outside the eye loop!

Separating the Left and Right-eye Views –
Shutterglasses

Infrared transmitter to
synchronize the left-right of the
glasses to the left-right of the
screen refresh

mjb – January 27, 2011

Oregon State University
Computer Graphics

4

Separating the Left and Right-eye Views –
Head-mounted Goggles

mjb – January 27, 2011

Oregon State University
Computer Graphics

Separating the Left and Right-eye Views –
the Stereo Mirror

mjb – January 27, 2011

Oregon State University
Computer Graphics

Separating the Left and Right-eye Views –
Dual Projectors (“GeoWall”)

Two filters statically provide the polarization

mjb – January 27, 2011

Oregon State University
Computer Graphics

Separating the Left and Right-eye Views –
Stereo Movie Projectors

mjb – January 27, 2011

Oregon State University
Computer Graphics

One filter dynamically provides the polarization

Carmike Theatres, Corvallis

Separating the Left and Right-eye Views –
Stereo Movie Projectors

For movies and sporting events

mjb – January 27, 2011

Oregon State University
Computer Graphics

Separating the Left and Right-eye Views

mjb – January 27, 2011

Oregon State University
Computer Graphics

5

Separating the Left and Right-eye Views –
Left-Right 3DTV

mjb – January 27, 2011

Oregon State University
Computer Graphics

Shutterglasses

Separating the Left and Right-eye Views –
Top-Bottom 3DTV

mjb – January 27, 2011

Oregon State University
Computer Graphics

Shutterglasses

Separating the Left and Right-eye Views –
Interlaced 3DTV

mjb – January 27, 2011

Oregon State University
Computer Graphics

Shutterglasses

Separating the Left and Right-eye Views –
Red-Cyan Anaglyphs

mjb – January 27, 2011

Oregon State University
Computer Graphics

Separating the Left and Right-eye Views –
ColorCode™

mjb – January 27, 2011

Oregon State University
Computer Graphics

This is what was used at the
2009 Super Bowl halftime!

Encoding Stereo in a Single Image –
ChromaDepth™

mjb – January 27, 2011

Oregon State University
Computer Graphics

6

Encoding Stereo in a Single Image –
ChromaDepth™

mjb – January 27, 2011

Oregon State University
Computer Graphics

Separating the Left and Right-eye Views –
Lenticular

Mash up image from multiple eye position images

mjb – January 27, 2011

Oregon State University
Computer Graphics

Separating the Left and Right-eye Views –
Other Ways

mjb – January 27, 2011

Oregon State University
Computer Graphics

Stereographics Rules of Thumb

• Stereographics is especially good for de-cluttering wireframe displays.

• Use perspective, not orthographic, projections to avoid the optical illusion.

• Use an eye separation, E, of approximately: E = Z0p * tan(1˚-4˚)

• Use the far clipping plane well. The stereo effects are enhanced when the scene is not
complicated by a lot of tiny detail that is far away. The interactive response is improved
too.

• Because you are drawing the scene twice, using display lists is especially important.

mjb – January 27, 2011

Oregon State University
Computer Graphics

Because you are drawing the scene twice, using display lists is especially important.

• It is fun to set Z0p = Zfar so that the image appears to be hanging out in the air in front of
the monitor. However, in real life we rarely see anything hanging out in the air that has its
sides clipped for no apparent reason, as the scene is likely to have. Perceptually, it is often
better to set Z0p = Znear so that the entire scene looks like it is inside the monitor and
that you are viewing it through a rectangular hole cut through the glass. This situation is
common in everyday life, so we are used to seeing things that way.

• Intensity depth cueing (glFog) nicely enhances the stereo illusion.

• If you are using texture mapping, be sure to use GL_LINEAR, not GL_NEAREST, for the
texture filtering.

From what you now know, real stereo images have to be generated
from the original data – they cannot be as effectively retro-generated from a

mono image, at least not without a lot of work.

Beware the multiple plane effect !

Watch out for a lot of monoscopic movies being “re-released” in stereo !

mjb – January 27, 2011

Oregon State University
Computer Graphics

mjb – January 27, 2011

Oregon State University
Computer Graphics

