Directly Visualizing Volume Data

Mike Bailey

mjb@cs.oregonstate.edu

Oregon State University

mjb – May 22, 2015

Volume Data: A Definition

A *volume* is a 3D discretely sampled data set where the size of the voxels have been expanded to occupy the space to the neighboring voxels.

Why Do We Care About Volume Visualization?

- Medical: CAT, MRI, 3D ultrasound
- Science and engineering: CFD, stress, thermal, molecular
- Volumes are normally very difficult to comprehend

mjb - May 22, 2015

How can you get a volume dataset? (Ewww...)

Montreal Neurological Institute at McGill University

Researchers used a tool called a microtome to cut a brain into slices 20 micrometers thick.

Understanding Volume Data Usually Involves a Compromise

Point Clouds All values everywhere, hard to see very much, distracting artifacts

Interpolated-colors cutting planes All values in a single plane

Contours cutting plane Discrete values in a single plane

Isosurfaces A single value everywhere

Because of these compromises, these are all considered to be *indirect* ways to visualize volume data

Voxel Compositing

Recall this color blending equation from the OpenGL Transparency notes:

$$C' = \alpha C_{new} + (1.-\alpha) C_{old}$$

In "Voxel World", things work the same way:

Voxel Compositing Example

TMIN = 0.TMAX = 100.

The color transfer function is a **Black-Red-Yellow-White heated object scale**, mapping a scalar value of 0. to Black, and 100. to White.

The opacity transfer function is a linear ramp so that the opacity is 1. (opaque) when T=100. and 0. (transparent) when T=0.

You are compositing back-to-front through the volume. At this moment, the running values of RGB are (0., 1., 1.). The next voxel you encounter has a T value of 33.33

- 1. What is the color of just this voxel?
- 2. What is the opacity of just this voxel?
- 3. What will the new running RGB values be when you are done compositing this voxel with the old running RGB values?

mjb – May 22, 2015

What is the color of just this voxel?

What is the opacity of just this voxel?

What will the new running RGB values be when you are done compositing this voxel with the old running RGB values?


```
In Display(), I:
            glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, GL_CLAMP ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, GL_CLAMP ); glTexEnvf( GL_TEXTURE_ENV, GL_TEXTURE_ENV_MODE, GL_REPLACE );
            int filter = GL_NEAREST;
            if( Bilinear )
              filter = GL_LINEAR;
            else
              filter = GL_NEAREST;
            glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, filter ); glTexParameterf( GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, filter ); glPixelStorei( GL_UNPACK_ALIGNMENT, 1 );
            glEnable( GL_TEXTURE_2D );
            {\sf glBlendFunc}(\,{\sf GL\_SRC\_ALPHA}, {\sf GL\_ONE\_MINUS\_SRC\_ALPHA}\,);\\
            glEnable( GL_BLEND );
             DetermineVisibility();
                                                                                          Sets the global variables Major,
                                                                                          Xside, Yside, and Zside
           float z0, dz;
if( Major -- Z )
              if( Zside == PLUS )
                  z0 = -1.;
                                                                              // back-to-front
                  dz = 2. / (float)(NZ - 1);
                                                                              // front-to-back
                  dz = -2. / (float)(NZ - 1);
                                                                                                                                           mjb – May 22, 2015
```

```
In Display(), II:
         x=-1., y= 1., s=0., t=1.
                                                                                   x= 1., y= 1., s=1., t=1.
       x=-1., y=-1., s=0., t=0.
                                                                             x= 1., y=-1., s=1., t=0.
glBegin( GL_QUADS );
for(z = 0; z < NZ; z++, zcoord += dz)
     glTexImage2D(\ GL\_TEXTURE\_2D,\ 0,\ 4,\ NX,\ NY,\ 0,\ GL\_RGBA,\ GL\_UNSIGNED\_BYTE,\ \&TextureXY[z][0][0][0]\ );
     glTexCoord2f( 0.f, 0.f );
     glVertex3f( -1.f, -1.f, zcoord );
     glTexCoord2f( 1.f, 0.f );
     glVertex3f( 1.f, -1.f, zcoord );
    glTexCoord2f( 1.f, 1.f );
glVertex3f( 1.f, 1.f, zcoord );
    glTexCoord2f( 0.f, 1.f );
glVertex3f( -1.f, 1.f, zcoord );
glEnd();
        // if( Major == Z )
                                                                                                                      mjb – May 22, 20
```


