Using the Accumulation Buffer for Visualization

Mike Bailey
mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
Here’s how the Accumulation Buffer works:

1. You can multiply the RGBs in the Back Buffer by a constant
2. You can multiply the RGBs in the Accumulation Buffer by a constant
3. You can add the RGBs in the Back Buffer to the RGBs in the Accumulation Buffer
4. You can copy the Accumulation Buffer to the Back Buffer
Using the Accumulation Buffer to Achieve *Motion Blur*

1. Draw the new frame into the Back Buffer and multiply all its RGBs by A.

2. Multiply all the Accumulation Buffer’s RGBs by \((1 - A)\) and add the Back Buffer into it ("GL_ACCUM"). Basically, you are blending the new animation frame with a collection of the old frames.

3. Copy ("GL_RETURN") the Accumulation Buffer to the Back Buffer.

4. Swap the Front and Back Buffers ("glutSwapBuffers").

The framebuffer starts out as: \(FB0 = \text{Black}\)

The first frame results in: \(FB1 = AF1 + (1-A)FB0 = AF1 + (1-A)\text{Black}\)

The second frame results in: \(FB2 = AF2 + (1-A)FB1 = AF2 + (1-A)AF1 + (1-A)^2\text{Black}\)

The third frame results in: \(FB3 = AF3 + (1-A)AF2 + (1-A)^2AF1 + (1-A)^3\text{Black}\)

\[
\text{glAccum}(\text{GL_MULT}, \quad A \); \\
\text{glAccum}(\text{GL_ACCUM}, \quad 1-A \); \\
\text{glAccum}(\text{GL_RETURN}, \quad 1.00 \);
\]
Using the Accumulation Buffer to Achieve *Motion Blur*
The framebuffer starts out as: \(FB_0 = \text{Black} \)

The first frame results in: \(FB_1 = 0.900 \cdot F_1 + 0.100 \cdot FB_0 = 0.900 \cdot F_1 + 0.100 \cdot \text{Black} \)

The second frame results in: \(FB_2 = 0.900 \cdot F_2 + 0.100 \cdot FB_1 = 0.900 \cdot F_2 + 0.090 \cdot F_1 + 0.010 \cdot \text{Black} \)

The third frame results in: \(FB_3 = 0.900 \cdot F_3 + 0.090 \cdot F_2 + 0.009 \cdot F_1 + 0.001 \cdot \text{Black} \)