Color in Scientific Visualization

This work is licensed under a <u>Creative Commons</u> <u>Attribution-NonCommercial-NoDerivatives 4.0</u> <u>International License</u>

Oregon State University Computer Graphics 1

"The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed, so difficult and subtle that avoiding catastrophe becomes the first principle in bringing color to information. *Above all, do no harm.*"

-- Edward Tufte

Computer Graphics

What's Wrong with this Color Scale?

Scientific American, June 2000

Not a bad choice of color scale, but the Dynamic Range needs some work

Good choice of color scale and Dynamic Range (probably a summer-only scale)

6 Two-color Scale Showing where Americans travel for Thanksgiving

New York Times

Let's start with the most important component in a visualization system – You!

How Many Shades of Different Colors Are We Able to Detect?

University Computer Graphics

Sensors in Your Retina

Rods

- ~115,000,000
- Concentrated on the periphery of the retina
- Sensitive to intensity
- Most sensitive at 500 nm (~green)

Cones

- ~7,000,000
- Concentrated near the center of the retina
- Sensitive to color

 Three types of cones: long(~red), medium (~green), and short (~blue) wavelengths

9

Computer Oraphics

Computer Graphics

12

A person with 20/20 vision has a visual acuity of: 1 arc-minute = $1/60^{\circ}$

Monitors: Additive Colors

14

Additive Color (RGB)

Plasma Displays use Additive Color

LCD Displays use Additive Color

Hue-Saturation-Value (HSV): 18 For many vis applications, a simpler way to specify additive color

Home Depot uses a form of HSV :-)

Computer Graphies

Hue-Saturation-Value (HSV):

For many vis applications, a simpler way to specify additive color

20

Hue-Saturation-Value: The OSU ColorPicker Program

ParaView Allows You to Pick Among Several Preset Color Ranges22

ParaView Allows You to Sculpt Your Own Color Range

OpenDX Allows you to Sculpt the Transfer Function in HSV

http://colorbrewer2.org

http://colorbrewer2.org

Subtractive Colors (CMYK)

Subtractive Color (CMYK)

R Y=R+G M=R+B W=R+G+B C=G+B B

Oregon State University Computer Graphics 28

Color Printing

- Uses subtractive colors
- Uses 3 (CMY) or 4 (CMYK) passes
- CMYK printers have a better-looking black
- There is a considerable variation in color *gamut* between products

University Computer Graphics

How Do Color Separations Work in Color Printing?

Source: R. Daniel Overheim and David Wagner, *Light and Color*, John Wiley & Sons, 1982.

Oregon State University Computer Graphics

Getting the CMYK Colors

Oregon State University Computer Graphics

Wax

CIE Chromaticity Diagram

CIE Chromaticity Diagram

Color Gamut for a Workstation Monitor

Color Gamut for a Monitor and Color Slides

Color Gamut for a Monitor and Color Printer

The Perceptually Uniform L-a-b Color Space

Color Meters Are Able to Measure L-a-b Coordinates

Some Good Rules of Thumb When Using Color for Scientific Visualization

What Makes a Good Contrast?

- Many people think simply adding color onto another color makes a good contrast
- In fact, a better measure is the Δ Luminance
- Using this also helps if someone makes a grayscale photocopy of your color hardcopy

Color Alone Doesn't Cut It !

Luminance Contrast is Crucial !

I would prefer that my life depend on being able to read *this* quickly and accurately!

TUESDAY MARCH 29 3-4 PM

RSVP to:

http://oregonstate.qualtrics.com/ jfe/form/SV_cGCdsS219l1FXiR_

Or call: 541.737.0664

The Luminance Equation

Y = .30*Red + .59*Green + .11*Blue

Luminance Table

	R	G	В	Y
Black	0.0	0.0	0.0	0.00
White	1.0	1.0	1.0	1.00
Red	1.0	0.0	0.0	0.30
Green	0.0	1.0	0.0	0.59
Blue	0.0	0.0	1.0	0.11
Cyan	0.0	1.0	1.0	0.70
Magenta	1.0	0.0	1.0	0.41
Orange	1.0	0.5	0.0	0.60
Yellow	1.0	1.0	0.0	0.89

\approx Contrast Table

(I use a ΔL^* of about 0.40)

		-			-				
	Black	White	Red	Green	Blue	Cyan	Magenta	Orange	Yellow
Black	0.00	1.00	0.30	0.59	0.11	0.70	0.41	0.60	0.89
White	1.00	0.00	0.70	0.41	0.89	0.30	0.59	0.41	0.11
Red	0.30	0.70	0.00	0.29	0.19	0.40	0.11	0.30	0.59
Green	0.59	0.41	0.29	0.00	0.48	0.11	0.18	0.01	0.30
Blue	0.11	0.89	0.19	0.48	0.00	0.59	0.30	0.49	0.78
Cyan	0.70	0.30	0.40	0.11	0.59	0.00	0.29	0.11	0.19
Magenta	0.41	0.59	0.11	0.18	0.30	0.29	0.00	0.19	0.48
Orange	0.60	0.41	0.30	0.01	0.49	0.11	0.19	0.00	0.30
Yellow	0.89	0.11	0.59	0.30	0.78	0.19	0.48	0.30	0.00

White	Black	Black White						
Red	Red		Red	Red	Red	Red	Red	Red
Yellow	Yellow	Yellow		Yellow	Yellow	Yellow	Yellow	Yellow
Green	Green	Green	Green	Green		Green	Green	Green
Blue	Blue	Blue	Blue	Blue	Blue	Blue		Blue

Do Not Attempt to Fight Pre-Established Color Meanings

University Computer Graphics

mjb – March 15, 2019

Pre-Established Color Meanings

Red:	Green:	Blue:	White:
Stop On Off Dangerous Hot High stress Oxygen Shallow Money loss	On Plants Carbon Moving Money	Cool Safe Deep Nitrogen	Neutral Hydrogen

In Visualization, we Use the Concept of a *Transfer Function* 52 to set Color and Opacity as a Function of Scalar Value

Use the Right Transfer Function Color Scale to Represent a Range of Scalar Values

- Gray scale
- Intensity Interpolation
- Saturation interpolation
- Two-color interpolation
- Rainbow scale
- Heated object interpolation
- Blue-White-Red

Gray Scale

Intensity and Saturation Color Scales

Oregon State University Computer Graphics

E.g., data uncertainty

Two-Color Interpolation

Oregon State University Computer Graphics

E.g., geography

Rainbow Color Scale

mjb – March 15, 2019

Heated Object Color Scale

Implementation: add one color component at a time

mjb – March 15, 2019

Blue-White-Red Color Scale

E.g., molecules

mjb – March 15, 2019

Color Scale Contours

Oregon State University Computer Graphics

A Gallery of Color Scales

Something Different: A Gallery of Add-One-Component-at-a-Time Color Scales

Oregon State University Computer Graphics

Something Different – Adding Black Beyond Blue

Something *Really* **Different – The Haxby Color Scale**

But, Here's What's Really Important:

Given any 2 colors, make it *intuitively obvious* which represents "higher" and which represents "lower"

But, Here's What's Really Important:

Given any 2 colors, make it *intuitively obvious* which represents "higher" and which represents "lower"

What in the World was *The Oregonian* Thinking When They Chose This Color Scale?

Source:

The Oregonian, January 11, 2006

Oregon State University Computer Graphics Shouldn't lush-green colors represent wet and sand-colors represent dry?

This is Better ...

Source: The Oregonian, October 31, 2006

And, one more

mjb - March 15, 2019

Source: *The Oregonian*, February 21, 2010 Oregon State University Computer Graphics

Limit the Total Number of Colors if Viewers are to Discern Information Quickly

Instructions:

1. Press red to logoff normally

2. Press light red to delete all your files, change your password to something random, and logoff

You have 2 seconds •••

Color Rules

In visualization applications, we must be aware that our perception of color changes with:

- The surrounding color
- How close two objects are
- How long you have been staring at the color
- Sudden changes in the color intensity

University Computer Graphics

Oregon State University Computer Graphics 75

Oregon State University Computer Graphics 76

http://xkcd.com

http://xkcd.com

University Computer Graphics

So, What's Up with the "Blue Dress" Debate?

New York Times

Oregon State University Computer Graphics

It's part of the Color Constancy effect

If you see this color, but you expect that the dress is currently in a shadow, you "know" that it must really be this color.

If you see this color, but you expect the dress is currently in bright light, you "know" that it must really be this color.

Afterimages

Afterimages

Think of the Mach Banding problem as being similar to trying to round second base at a 90° angle.

The Ability to Discriminate Colors Changes with the Size of the Colored Area

University Computer Graphics

The Ability to Discriminate Colors Changes with the Ambient Light

mjb – March 15, 2019

The Ability to Discriminate Colors Changes with the Age of the Viewer

mjb – March 15, 2019

Be Aware of Color Vision Deficiencies (CVD)

- In general, there is no such thing as total "color blindness"
- CVD affects ~10% of Caucasian men
- CVD affects ~4% of non-Caucasian men
- CVD affects ~0.5% of women
- The most common type of CVD is red-green
- Blue-yellow also exists

Resources for designing color schemes for people with color recognition deficiencies:

http://colorbrewer2.org http://colororacle.org/usage.html http://mkweb.bcgsc.ca/colorblind/

It's because the red-green CVD defect is carried on the X Chromosome

http://www.bio.miami.edu/~cmallery/150/mendel/c7.15.X.Y.jpg

A woman with the defective gene on one X chromosome probably has a dominant non-defective gene on the other. A man with a defect gene on his one X chromosome has no other gene to "fix" it.

Oregon Sta X C University Computer Graphics 93

Be Aware of CVD: Code Information Redundantly

Four score and seven years ago, our forefathers brought forth upon this continent a new nation... Four score and seven years ago, our forefathers brought forth upon this continent a new nation... Four score and seven years ago, our forefathers brought forth upon this continent a new nation...

Be Aware of CVD: Code Information Redundantly: Color + ...

- Different fonts
- Symbols
- Fill pattern
- Outline pattern
- Outline thickness

This also helps if someone makes a grayscale photocopy of your color hardcopy

Use a Black or White Line as the Boundary Between Colored Regions

Do Not Display Fast-moving or High-detail Items in Color, Especially Blue

Watch the Use of Saturated Reds and Blues Together

Be Aware of the Differences Between Color Gamuts –

Adapt by Deciding What is Most Important for Your Visualization

University Computer Graphics

Color Gamut for a Monitor and a Color Printer

Color-Preserving vs. Contrast-Preserving Gamut Mappings

Beware of Gratuitous Color Pollution

Just because you have millions of colors to choose from,

doesn't mean you must use them all •••

University Computer Graphics

Beware of Lots of Other Stuff

mjb – March 15, 2019

mjb – March 15, 2019

Computer Graphics

Computer Graphics

108

Oregon State University Computer Graphics

Good Color and Perception References

- Theresa-Marie Rhyne, *Applying Color Theory to Digital Media and Visualization*, CRC Press, 2017.
- Maureen Stone, A Field Guide to Digital Color, AK Peters, 2003.
- Roy Hall, Illumination and Color in Computer Generated Imagery, Springer-Verlag, 1989.
- R. Daniel Overheim and David Wagner, *Light and Color*, John Wiley & Sons, 1982.
- David Travis, *Effective Color Displays*, Academic Press, 1991.
- L.G. Thorell and W.J. Smith, *Using Computer Color Effectively*, Prentice Hall, 1990.
- Edward Tufte, The Visual Display of Quantitative Information, Graphics Press, 1983.
- Edward Tufte, *Envisioning Information*, Graphics Press, 1990.
- Edward Tufte, Visual Explanations, Graphics Press, 1997.
- Howard Resnikoff, *The Illusion of Reality*, Springer-Verlag, 1989.

University Computer Graphics