Zooming and Panning Around a Complex 2D Display

- Standard (Euclidean) geometry zooming forces much of the information off the screen
- This eliminates the context from the zoomed-in display
- This problem can be solved with hyperbolic methods if we are willing to give up Euclidean geometry
Polar Hyperbolic Equations

Overall theme: something divided by something else a little bigger

\[R' = \frac{R}{R+K} \]
\[\Theta' = \Theta \]
\[X' = R' \cos \Theta' \]
\[Y' = R' \sin \Theta' \]

Because \(R' = \frac{R}{R+K} \) then:

\[\lim_{K \to 0} \frac{R'}{K} = 1 \]
\[\lim_{K \to 0} \frac{R'}{K} = 0 \]

Polar Hyperbolic Equations Don't Actually Need to use Trig

\[R = \sqrt{X^2 + Y^2} \]
\[\Theta = \tan^{-1} \left(\frac{Y}{X} \right) \]
\[R' = \frac{R}{R+K} \]

Coordinates moved to outer edge when \(K = 0 \)

Coordinates moved to center when \(K = \infty \)

\[X' = \frac{R}{R+K} \times \frac{X}{R} = \frac{X}{R+K} \]
\[Y' = \frac{R}{R+K} \times \frac{Y}{R} = \frac{Y}{R+K} \]

Cartesian Hyperbolic Equations – Treat X and Y Independently

Polar

\[X' = \frac{X}{R+K} \]
\[Y' = \frac{Y}{R+K} \]

Cartesian

\[X' = \frac{X}{\sqrt{X^2 + K^2}} \]
\[Y' = \frac{Y}{\sqrt{Y^2 + K^2}} \]

Coordinates moved to outer edge when \(K = 0 \)

Coordinates moved to center when \(K = \infty \)

Zooming in Cartesian Hyperbolic Space
Your code computes the hyperbolic transformation here and here, and OpenGL draws a straight line between them. But this point had its hyperbolic transformation computed separately, and doesn’t match up with the straight line.

This kind of situation is called a T-intersection, and crops up all the time in computer graphics, even though we don’t want it to.

A Solution to the T-Intersection Problem

Break this line up into several (many?) sub-pieces, and perform the Hyperbolic Transformation on each intermediate point.

\[P(t) = (1-t)P_0 + tP_1 \]

\[t = 0, 0.01, 0.02, 0.03, \ldots \]

This makes that straight line into a curve, as it should be. But, how many line segments should we use?

A More Elegant Approach is to Recursively Subdivide

```c
void DrawHyperbolicLine( P0, P1 )
{
    Compute point \( A = \frac{P_0 + P_1}{2} \).
    Convert point A to Hyperbolic Coordinates, calling it \( A' \).
    Convert \( P_0 \) and \( P_1 \) to Hyperbolic Coordinates \( P_0' \), \( P_1' \).
    Compute point \( B' = \frac{P_0' + P_1'}{2} \).
    Compare \( A' \) and \( B' \).
    if( they are “close enough” )
        Draw the line \( P_0' - P_1' \).
    else
        DrawHyperbolicLine( P0, A' ).
        DrawHyperbolicLine( A', P1 ).
}
```

Subdividing to render a curve or surface correctly is a recurring theme in computer graphics.