
1

mjb – February 28, 2019
Computer Graphics

1

Hyperbolic Geometry for Visualization

hyperbolic.ppts

Mike Bailey
mjb@cs.oregonstate.edu

mjb – February 28, 2019
Computer Graphics

2
Zooming and Panning Around a Complex 2D Display

• Standard (Euclidean) geometry zooming forces much of the information off the screen

• This eliminates the context from the zoomed-in display

• This problem can be solved with hyperbolic methods if we are willing to give up
Euclidean geometry

mjb – February 28, 2019
Computer Graphics

3
Usual Zooming in Euclidean Space

123,101 line strips
446,585 points

mjb – February 28, 2019
Computer Graphics

4
Zooming in Polar Hyperbolic Space

2

mjb – February 28, 2019
Computer Graphics

5
Polar Hyperbolic Equations

(X,Y)

R

Θ

R’ = R / (R+K)

Θ’ = Θ

X’ = R’cosΘ’
Y’ = R’sinΘ’

Overall theme: something divided by something else a little bigger

1'lim
0




R
K

0'lim 


R
K

then:' RR
R K




Because

mjb – February 28, 2019
Computer Graphics

6

YXR 22 

)(tan 1

X
Y

KR
RR


'

KR
X

R
X

KR
RRX





 cos''

' 'sin R Y YY R
R K R R K

    
 

Polar Hyperbolic Equations Don’t Actually Need to use Trig

Coordinates moved to outer edge
when K = 0

Coordinates moved to center when K = ∞

mjb – February 28, 2019
Computer Graphics

7

KR
XX


'

Cartesian Hyperbolic Equations – Treat X and Y Independently

KR
YY


'

KX

XX
22

'




KY

YY
22

'




{
{Polar

Cartesian

Coordinates moved to outer edge
when K = 0

Coordinates moved to center when K = ∞

mjb – February 28, 2019
Computer Graphics

8
Zooming in Cartesian Hyperbolic Space

3

mjb – February 28, 2019
Computer Graphics

9
The Problem with T-Intersections

mjb – February 28, 2019
Computer Graphics

10
The Problem with T-Intersections

Your code computes the hyperbolic transformation
here and here, and OpenGL draws a straight line
between them. But, this point had its hyperbolic
transformation computed separately, and doesn’t
match up with the straight line.

This kind of situation is called a T-intersection, and
crops up all the time in computer graphics, even
though we don’t want it to. 

mjb – February 28, 2019
Computer Graphics

11
A Solution to the T-Intersection Problem

Break this line up into several (many?) sub-pieces, and perform the
Hyperbolic Transformation on each intermediate point.

This makes that straight line into a curve, as it should
be. But, how many line segments should we use?

0 1() (1)P t t P tP  
t = 0., .01, .02, .03, …

mjb – February 28, 2019
Computer Graphics

12
A More Elegant Approach is to Recursively Subdivide

void
DrawHyperbolicLine(P0, P1)
{

Compute point

Convert point A to Hyperbolic Coordinates, calling it A’

Convert P0 and P1 to Hyperbolic Coordinates P0’, P1’

Compute point

Compare A’ and B
if(they are “close enough”)
{

Draw the line P0’-P1’
}
else
{

DrawHyperbolicLine(P0, A);
DrawHyperbolicLine(A, P1);

}
}

0 1

2.
P PA 



0 1' ''
2.

P PB 


Subdividing to render a curve or surface correctly is a
recurring theme in computer graphics.

4

mjb – February 28, 2019
Computer Graphics

13Hyperbolic Corvallis (Streets, Buildings, Parks)

Kelley
Engineering

Center

mjb – February 28, 2019
Computer Graphics

14

http://www.sott.net/articles/show/215021-Hyperbolic-map-of-the-internet-will-save-it-from-COLLAPSE

