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Hyperbolic Geometry for Visualization

hyperbolic.ppts

Mike Bailey
mjb@cs.oregonstate.edu
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Zooming and Panning Around a Complex 2D Display

• Standard (Euclidean) geometry zooming forces much of the information off the screen

• This eliminates the context from the zoomed-in display

• This problem can be solved with hyperbolic methods if we are willing to give up 
Euclidean geometry
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Usual Zooming in Euclidean Space

123,101 line strips
446,585 points
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Zooming in Polar Hyperbolic Space
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Polar Hyperbolic Equations

(X,Y)

R

Θ

R’ = R / (R+K)

Θ’ = Θ

X’ = R’cosΘ’
Y’ = R’sinΘ’

Overall theme: something divided by something else a little bigger
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Polar Hyperbolic Equations Don’t Actually Need to use Trig

Coordinates moved to outer edge 
when K = 0

Coordinates moved to center when K = ∞
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Cartesian Hyperbolic Equations – Treat X and Y Independently
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Coordinates moved to outer edge 
when K = 0

Coordinates moved to center when K = ∞
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Zooming in Cartesian Hyperbolic Space
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The Problem with T-Intersections

mjb – February 28, 2019
Computer Graphics

10
The Problem with T-Intersections

Your code computes the hyperbolic transformation 
here and here, and OpenGL draws a straight line 
between them.  But, this point had its hyperbolic 
transformation computed separately, and doesn’t 
match up with the straight line.

This kind of situation is called a T-intersection, and 
crops up all the time in computer graphics, even 
though we don’t want it to.  
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A Solution to the T-Intersection Problem

Break this line up into several (many?) sub-pieces, and perform the 
Hyperbolic Transformation on each intermediate point.

This makes that straight line into a curve, as it should 
be.  But, how many line segments should we use?

0 1( ) (1 )P t t P tP  
t = 0., .01, .02, .03, …
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A More Elegant Approach is to Recursively Subdivide

void
DrawHyperbolicLine( P0, P1 )
{

Compute point

Convert point A to Hyperbolic Coordinates, calling it A’

Convert P0 and P1 to Hyperbolic Coordinates P0’, P1’

Compute point

Compare A’ and B
if( they are “close enough” )
{

Draw the line P0’-P1’
}
else
{

DrawHyperbolicLine( P0, A );
DrawHyperbolicLine(  A, P1 );

}
}  
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Subdividing to render a curve or surface correctly is a 
recurring theme in computer graphics.
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13Hyperbolic Corvallis (Streets, Buildings, Parks)

Kelley 
Engineering 

Center
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http://www.sott.net/articles/show/215021-Hyperbolic-map-of-the-internet-will-save-it-from-COLLAPSE


