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Resampling Scattered Data into a Regular Grid

Mike Bailey
mjb@cs.oregonstate.edu
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http://www.ncdc.noaa.gov/nexradinv/

The Problem

Oftentimes data points are located 
irregularly, that is, they are not in 
nice, neat rectilinear grids.

This is called Scattered Data.

To use an Interpolated Color 
method, we need to triangulate the 
data so we can draw color-
interpolated triangles.

To use Contours, we need to 
triangulate the data and re-sample 
it into a rectangular grid.
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http://www.ncdc.noaa.gov/nexradinv/

Once you have a Good Triangularization, 
You Can Superimpose any Data Grid You Want,

and Re-sample the Data Values There

We will see how to do that later in these notes.
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Not all Triangularizations are Created Equal:
Which of These is Better, and Why?

Long and
Skinny

Triangles
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Three Steps

1. Fit a good set of triangles through the scattered points 

2. Find out which triangle each new point is in

3. Interpolate within those triangles
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1. Delauney Triangulation

This is an incremental algorithm, that is, you start with a “frame 
triangularization”, and add a point at a time, adjusting the 
triangularization each time.
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1. Add a new point 2. Figure out which triangle it is in.

3. Create 3 new triangles by drawing lines 
from the new point to the 3 vertices of 
the bounding triangle

Adding a Point
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2. Figure out which triangle it is in.

3. Create 3 new triangles by drawing lines 
from the new point to the 3 vertices of 
the bounding triangle

4. For each of the 3 new triangles, fit a 
circle through the 3 vertices (the new 
point, and the two existing points).

Look at each New Triangle,
and Decide if it is Too Long and Skinny
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4. For each of the 3 new triangles, fit a 
circle through the 3 vertices (the new 
point, and the two existing points).

5. If the opposite point is inside the circle, 
then the circle is “too big”, indicating that 
the triangle that was created is too long 
and skinny.

6. Delete the existing bounding edge , thus 
deleting two triangles.

If it’s Too Long and Skinny, Fix It
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5. If the opposite point is inside the circle, 
then the circle is “too big”, indicating that 
the triangle that was created is too long 
and skinny.

6. Delete the existing bounding edge, thus 
deleting two triangles.

7. Add a cross edge to make 2 new 
triangles

If it’s Too Long and Skinny, Fix It
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A Very Slight Change in Point Location can affect the Triangularization
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A Use for the Cross and Dot Products :
Is a Point Inside a Triangle? – 3D (X-Y-Z) Version

Q

R

S

P

( ) ( )n R Q S Q   

n

Let:

( ) ( )   qn R Q P Q

( ) ( )   rn S R P R

( ) ( )   sn Q S P S

( ), ( ), ( )q r sn n n n and n n  If
are all positive, then P is inside the triangle QRS

Finding if a point is inside a triangle is used both in the Delauney
triangularization algorithm and in re-sampling to a new grid
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3. Interpolating Data Values within a Triangle

Once we know the point is within a particular triangle, we need to 
interpolate within that triangle.  Use a linear function:

Vertex #0:
x0, y0, s0

(x,y)

S Ax By C  

Vertex #1:
x1, y1, s1

Vertex #2:
x2, y2, s2
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Think of the Scalar Function as Elevations
and Think of the Triangle Linear Interpolation Function as a Plane Being Fitted

on top of the Data Values

Vertex #0:
x0, y0, s0

Vertex #1:
x1, y1, s1

Vertex #2:
x2, y2, s2
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0 0 0

1 1 1

2 2 2

s Ax By C
s Ax By C
s Ax By C

  
  
  

0 0 0

1 1 1

2 2 2

1
1
1

x y A s
x y B s
x y C s

     
         
         

Since, at Vertices 0, 1, and 2, we know x, y, and s,
we can write 3 Equations with 3 Unknowns

or, in matrix form:
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0 0 0

1 1 1

2 2 2

s Ax By C
s Ax By C
s Ax By C

  
  
  

1 0 1 0 1 0

2 0 2 0 2 0

x x y y s sA
x x y y s sB
      

          

You can actually simplify it to 2 Equations with 2 Unknowns

or, in matrix form:

1 0 1 0 1 0

2 0 2 0 2 0

( ) ( )
( ) ( )

s s A x x B y y
s s A x x B y y
    
    
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1 0 1 0 1 0

2 0 2 0 2 0

x x y y s sA
x x y y s sB
      

          

Solve this 2x2 System in your Favorite Way – Cramer’s Rule Works Well

C is then computed by: 0 0 0C s Ax By  

1 0 2 0 2 0 1 0

1 0 2 0 2 0 1 0

1 0 2 0 2 0 1 0

1 0 2 0 2 0 1 0

( )( ) ( )( )
( )( ) ( )( )

( )( ) ( )( )
( )( ) ( )( )

s s y y s s y yA
x x y y x x y y

x x s s x x s sB
x x y y x x y y

    


    

    


    

Is it possible for A and/or B to compute to infinity?
What would that mean?
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Interpolating Data Values within a Triangle: An Example

Vertex #0:
X = 0.
Y = 0.
S = 0. Vertex #1:

X = 4.
Y = 0.
S = 12.

Vertex #2:
X = 3.
Y = 2.
S = 17.

(2,1)

S Ax By C  
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The Delauney Triangles can be used to Derive a Voronoi Diagram

Think of this as showing “Regions of Influence” around a Data Point
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Voronoi Diagram:
Most of the Time, the Lines are the Perpendicular Bisectors of the Triangle Edges
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Voronoi Regions of Influence


