
1

mjb – March 12, 2019

1

Computer Graphics

Scalar Visualization

scalar.pptx

Mike Bailey

mjb@cs.oregonstate.edu

mjb – March 12, 2019

2

Computer Graphics

In Visualization, we Use the Concept of a Transfer Function
to set Color as a Function of Scalar Value

Scalar Value

C
ol

or

mjb – March 12, 2019

3

Computer Graphics

A Gallery of Color Scale Transfer Function Possibilities

We will cover this in more detail in the color notes.

mjb – March 12, 2019

4

Computer Graphics

Glyphs

Glyphs are small symbols that can be placed at the location of data
points. In 2D, we often call this a scatterplot. The glyph itself can
convey information using properties such as:

• Type
• Color
• Size
• Orientation
• Transparency
• Features

The OpenDX AutoGlyph function gives you these type options:

mjb – March 12, 2019

5

Computer Graphics

OpenDX Scalar Glyphs

DiamondCircleSquare

Cube Sphere

mjb – March 12, 2019

6

Computer Graphics

LIGO Gravity Glyphs

Can also use shape to convey data-meaning

Hitting the secret Easter Egg key 

2

mjb – March 12, 2019

7

Computer Graphics

Using 3D Glyphs is called a Point Cloud

Orthographic Projection results in the row-of-corn problem Perspective Projection results in the Moiré problem

Good for overall patterns -- bad for detail

mjb – March 12, 2019

8

Computer Graphics

You See the Same Moiré Patterns Everywhere…

mjb – March 12, 2019

9

Computer Graphics

struct node
{

float x, y, z;
float s;
float r, g, b;

};

struct node Nodes[NX][NY][NZ];

A Simple Point Cloud Data Structure

mjb – March 12, 2019

10

Computer Graphics

In OpenGL . . .

float delx = (XMAX – XMIN) / (float)(NX-1);
float dely = (YMAX – YMIN) / (float)(NY-1);
float delz = (ZMAX – ZMIN) / (float)(NZ-1);

glPointSize(2.);
glBegin(GL_POINTS);

float x = XMIN;
for(int i=0; i < NX; i++, x += delx)
{

float y = YMIN;
for(int j=0; j < NY; j++, y += dely)
{

float z = ZMIN;
for(int k=0; k < NZ; k++, z += delz)
{

float scalar = Nodes[i][j][k].s;
float r = ???;
float g = ???;
float b = ???;
glColor3f(r, g, b);
glVertex3f(x, y, z);

}
}

}

glEnd();

NX = 4 means that we have 3 gaps

mjb – March 12, 2019

11

Computer Graphics

float x = -1. + 2. * (float)i / (float)(NX-1);

float y = -1. + 2. * (float)j / (float)(NY-1);

float z = -1. + 2. * (float)k / (float)(NZ-1);

Computing x, y, and z

Note that x, y, and z can be computed at each node point by just keeping track of them
and incrementing them each time through their respective loop, as shown on the
previous page. They can also be computed from the loop index like this:

i

0

NX-1

x

-1.

1.

0 (1.)

(1) 0 1.(1.)

i x

NX

  


  

mjb – March 12, 2019

12

Computer Graphics

Jitter Gives a Better Point Cloud Display

Orthographic Projection Perspective Projection

3

mjb – March 12, 2019

13

Computer Graphics

Point Cloud Culling Using Range Sliders

Full data Low values culled

mjb – March 12, 2019

14

Computer Graphics

slider = Glui->add_slider(true, GLUI_HSLIDER_FLOAT, SLowHigh, S, (GLUI_Update_CB) Sliders);

slider->set_float_limits(SLowHigh[0], SLowHigh[1]);
slider->set_slider_val(SLowHigh[0], SLowHigh[1]);
slider->set_w(SLIDERWIDTH);

sprintf(str, SFORMAT, SLowHigh[0], SLowHigh[1]);
SLabel = Glui->add_statictext_to_panel(rollout, str);

#define S 0

const char *SFORMAT = { "S: %.3f - %.3f" };

float SLowHigh[2];

GLUI_StaticText *SLabel;

void
Sliders(int id)
{

char str[256];
switch(id)
{

case S:
sprintf(str, SFORMAT, SLowHigh[0], SLowHigh[1]);
SLabel->set_text(str);
break;

Using Range Sliders

mjb – March 12, 2019

15

Computer Graphics

Drawing the Range Slider-Filtered Point Cloud

float x = XMIN;
for(int i=0; i < NX; i++, x += delx)
{

if(x < XLowHigh[0] || x > XLowHigh[1])
continue;

float y = YMIN;
for(int j=0; j < NY; j++, y += dely)
{

if(y < YLowHigh[0] || y > YLowHigh[1])
continue;

float z = ZMIN;
for(int k=0; k < NZ; k++, z += delz)
{

if(z < ZLowHigh[0] || z > ZLowHigh[1])
continue;

if(Nodes[i][j][k].s < SLowHigh[0] || Nodes[i][j][k].s > SLowHigh[1])
continue;

. . .

glColor3f(r, g, b);
glVertex3f(x, y, z);

}
}

}

glEnd();
mjb – March 12, 2019

16

Computer Graphics

Enhanced Point Clouds

• Color

• Alpha

• Pointsize

mjb – March 12, 2019

17

Computer Graphics

Point Clouds are nice, but they only tell us about the gross patterns.
We want more detail !

mjb – March 12, 2019

18

Computer Graphics

Here’s the situation: we have a 2D grid of data points. At each node,
we have an X, Y, Z, and a scalar value S. We know Smin, Smax, and
the Transfer Function.

Even though this is a 2D technique, we keep around the X, Y, and Z
coordinates so that the grid doesn’t have to lie in any particular plane.

2D Interpolated Color Plots

T

U

4

mjb – March 12, 2019

19

Computer Graphics

2D Interpolated Color Plots

We deal with one square of the mesh at a time:

X0, Y0, Z0, S0 X1, Y1, Z1, S1

X3, Y3, Z3, S3X2, Y2, Z2, S2

mjb – March 12, 2019

20

Computer Graphics

2D Interpolated Color Plots

Within that one square, we let OpenGL do the color interpolation for us

void
ColorSquare(. . .)
{

Compute an r, g, b for S0

glColor3f(r, g, b);
glVertex3f(X0, Y0, Z0);

Compute an r, g, b for S1

glColor3f(r, g, b);
glVertex3f(X1, Y1, Z1);

Compute an r, g, b for S3

glColor3f(r, g, b);
glVertex3f(X3, Y3, Z3);

Compute an r, g, b for S2

glColor3f(r, g, b);
glVertex3f(X2, Y2, Z2);

}

Note the order: 0-1-3-2 !

Use the
Transfer
Function

mjb – March 12, 2019

21

Computer Graphics

2D Interpolated Color Plots

Then we loop through all squares:

glShadeModel(GL_SMOOTH);
glBegin(GL_QUADS);
for(int i = 0; i < numT - 1; i++)
{

for(int j = 0; j < numU-1; j++)
{

ColorSquare(i, j, …);
}

}
glEnd();

mjb – March 12, 2019

22

Computer Graphics

2D Contour Lines

Here’s the situation: we have a 2D grid of data points. At each node,
we have an X, Y, Z, and a scalar value S. We know the Transfer

Function. We also have a particular scalar value, S*, at which we
want to draw the contour line(s).

Even though this is a 2D technique, we keep around the X, Y, and Z
coordinates so that the grid doesn’t have to lie in any particular plane.

T

U

mjb – March 12, 2019

23

Computer Graphics
http://www.digital-topo-maps.com

Hiking Maps are a Great Use for Contour Lines

mjb – March 12, 2019

24

Computer Graphics http://www.digital-topo-maps.com

Hiking Maps are a Great Use for Contour Lines

5

mjb – March 12, 2019

25

Computer Graphics

2D Contour Lines: Marching Squares

Rather than deal with the entire grid, we deal with one square at a time,
marching through them all. For this reason, this method is called the
Marching Squares.

X0, Y0, Z0, S0 X1, Y1, Z1, S1

X3, Y3, Z3, S3X2, Y2, Z2, S2

mjb – March 12, 2019

26

Computer Graphics

Marching Squares: A Cluster of Connected Line Segments

What’s really happening is that we are not creating contours by connecting
points into a complete curve. We are creating contours by drawing a
collection of 2-point line segments, safe in the knowledge that those line
segments will align across square boundaries.

mjb – March 12, 2019

27

Computer Graphics

Does S* cross any edges of this square?

X0, Y0, Z0, S0 X1, Y1, Z1, S1

Linearly interpolating the scalar value from node 0 to node 1 gives:

0 1 0 1 0(1) ()S t S tS S t S S     

where 0. ≤ t ≤ 1.

Setting this interpolated S equal to S* and solving for t gives:

0

1 0

*
*

S S
t

S S






S*

t

mjb – March 12, 2019

28

Computer Graphics

Interpreting t*: Where does S* cross the edge?

0

0

1 0

*
*

S S
t

S S






1

t* ≤ 0. t* ≥ 1.0. ≤ t* ≤ 1.

X*, Y*, Z*, S*

If 0. ≤ t ≤ 1., then S* crosses this edge. You can compute where S* crosses the
edge by using the same linear interpolation equation you used to compute t*:

0 1 0* *()X X t X X  

0 1 0* *()Y Y t Y Y  

0 1 0* *()Z Z t Z Z  

mjb – March 12, 2019

29

Computer Graphics

Do this for all 4 edges – when you are done, there are 5
possible ways this could have turned out

of intersections = 0: Do nothing

of intersections = 2: Draw a line from the first
intersection to the second

of intersections = 1: Error! This implies that the contour line
got into the square and never got out

of intersections = 3:
Error! This implies that the contour line
got into the square and never got out

of intersections = 4: Coming up shortly

Situation Action

mjb – March 12, 2019

30

Computer Graphics

What if S1 == S0 (i.e., t*=∞?)

0
0

1 0

*
*

S S
t

S S






1

t* ≤ 0. t* ≥ 1.0. ≤ t* ≤ 1.

Surprisingly, you just ignore this edge. Why? There are 2 possibilities. Let S* = 80

S1 == S0 == S*

80 80

7060

Ignore this edge

Intersections with these
edges create 2 points

S1 == S0 != S*

60 60

7090

Intersections with these
edges create 2 points

Ignore this edge

6

mjb – March 12, 2019

31

Computer Graphics

The 4-intersection Case

If there are 4 edge intersections with S*,
then this must mean that, going around the
square, the nodes are >S*, <S*, >S*, and
<S* in that order. This gives us a saddle
function, shown here in cyan.

If we think of the scalar values as terrain
heights, then we can think of S* as the
height of water that is flooding the terrain,
as shown here in magenta.

mjb – March 12, 2019

32

Computer Graphics

My Favorite Saddle Function :-)

mjb – March 12, 2019

33

Computer Graphics

The 4-intersection Case

The exact contour curve is shown in yellow, The Marching Squares contour line is shown in
green. Notice what happens as we lower S* -- there is a change in which sides of the square get
connected. That change happens when S* > M becomes S* < M (where M is the middle scalar
value).

S* > M S* < M

mjb – March 12, 2019

34

Computer Graphics

The 4-intersection Case:
Computing the middle scalar value, M

01 0 1() (1)S t t S tS  

Let’s linearly interpolate scalar values along the 0-1 edge, and along the 2-3 edge:

0 1 2 3(,) (1)(1) (1) (1)S t u t u S t u S t uS tuS       

23 2 3() (1)S t t S tS  

Now linearly these two linearly-interpolated scalar values:

01 23(,) (1)S t u u S uS  

Expanding gives:

This is the bilinear interpolation equation. Notice the similarity to the linear equation.

mjb – March 12, 2019

35

Computer Graphics

0 1 2 3
0 1 2 3

1 1 1 1 1 1
(,)
2 2 4 4 4 4 4

S S S S
M S S S S S

  
     

The middle scalar value, M, is what you get when you set t = .5 and u = .5:

0 1 2 3(,) (1)(1) (1) (1)S t u t u S t u S t uS tuS       

Thus, M is the average of the corner scalar values. (We could maybe have come to
this intuitively, but it was worthwhile to actually prove it.)

The 4-intersection Case:
Computing the middle scalar value, M

mjb – March 12, 2019

36

Computer Graphics

The 4-intersection Case

The logic for the 4-intersection case is as follows:

1. Compute M
2. If S0 is on the same side of M as S* is, then connect the 0-1 and 0-2

intersections, and the 1-3 and 2-3 intersections
3. Otherwise, connect the 0-1 and 1-3 intersections, and the 0-2 and 2-3

intersections

7

mjb – March 12, 2019

37

Computer Graphics

Overall Logic for a Set of Contour Lines

for(float S* = Smin ; S* <= Smax ; S* += ΔS)
{

Set color for S*
glBegin(GL_LINES);

for(int i = 0; i < numT - 1; i++)
{

for(int j = 0; j < numU-1; j++)
{

Process the square whose corner is at (i,j)
}

}
glEnd();

}

Note that it is bad programming practice to use a
floating-point variable to index the S* for-loop!

This has been done just to illustrate the concept.
Instead do this:

Using floats in a for-loop is a bad
programming practice!

int is;
float S*;
for(is = 0, S* = Smin ; is < numS ; is++, S* += ΔS)
{

. . .
mjb – March 12, 2019

38

Computer Graphics

Artifacts?

90 60

7090

What if the distribution of scalar values along the square edges isn’t linear?

We have no basis to assume anything, actually. So linear is as good as any other guess, and
lets us consider just one square by itself. Some people like looking at adjacent nodes and
using quadratic or cubic interpolation on the edge. This is harder to deal with computationally,
and is also making an assumption for which there is no evidence..

What if you have a contour that really looks like this?

You’ll never know. We can only deal with what data we’ve
been given.

There is no substitute for having an adequate number of
data points.

S* = 80

What if we subdivide the square and interpolate values? Does that help?

90 60

7090

S* = 80 90

80

65

75

77.5
No. We can only deal with what data we’ve been given.

mjb – March 12, 2019

39

Computer Graphics

And, of course, if you can do it in one plane,
you can do it in multiple planes

Remember this! In a moment, we are going to put this to use
in a different way, to create wireframe isosurfaces . . .

mjb – March 12, 2019

40

Computer Graphics

0 1 2 3 4 5 6 7(, ,) (1)(1)(1) (1)(1) (1) (1) (1) (1)(1) (1) (1)S t u v t u v S t u v S t u v S tu v S t u vS t u vS t uvS tuvS                   

S7
S6

S5
S4

S3S2

S1S0

While we’re at it:
Trilinear interpolation

u

v

t

This is useful, for example, if we have passed an oblique cutting
plane through a 3D mesh of points and are trying to interpolate
scalar values from the 3D mesh to the 2D plane.

mjb – March 12, 2019

41

Computer Graphics

Isosurfaces

A contour line is often called an isoline, that is a line of equal value. When hiking,
for example, if you could walk along a single contour line of the terrain, you would
remain at the same elevation.

An isosurface is the same idea, only in 3D. It is a surface of equal value. If you
could be a fly walking on the isosurface, you would always experience the same
scalar value (e.g., temperature).

Sometimes the shapes of the isosurfaces have a physical meaning, such as with
bone, skin, clouds, etc. Sometimes the shape just helps turn an abstract notion into
something physical to help us gain insight.

mjb – March 12, 2019

42

Computer Graphics

Wireframe Isosurfaces

Once you have done Marching Squares for
contour lines, doing wireframe isosurfaces is
amazingly easy. If I had to come up with a
name for this, I’d call it Marching Planes.

The strategy is that you pick your S*, then draw
S* contours on all the parallel XY planes. Then
draw S* contours on all the parallel XZ planes.
Then draw S* contours on all the parallel YZ
planes. And, then you’re done.

What you have looks like it is a connected
surface mesh, but in fact it is just independent
curves. It is easy to program (once you’ve
done Marching Squares at least), and looks
good. Also, it’s fast to compute.

Here’s the situation: we have a 3D grid of data points. At each node, we have an X, Y, Z,
and a scalar value S. We know the Transfer Function. We also have a particular scalar
value, S*, at which we want to draw the isosurface(s).

8

mjb – March 12, 2019

43

Computer Graphics

Overall Logic for a Wireframe Isosurface

Set color for S*
glBegin(GL_LINES);

for(int k = 0; k < numV; k++)
{

for(int i = 0; i < numT - 1; i++)
{

for(int j = 0; j < numU-1; j++)
{

Process square whose corner is at (i,j,k) in TU plane
}

}
}

for(int i = 0; i < numT ; i++)
{

for(int k = 0; k < numV-1; k++)
{

for(int j = 0; j < numU-1; j++)
{

Process square whose corner is at (i,j,k) in UV plane
}

}
}

for(int j = 0; j < numU; j++)
{

for(int i = 0; i < numT - 1; i++)
{

for(int k = 0; k < numV-1; k++)
{

Process square whose corner is at (i,j,k) in TV plane
}

}
}
glEnd();

mjb – March 12, 2019

44

Computer Graphics

Polygonal Isosurfaces

The original polygonal isosurface Marching Cubes algorithm used the observation that when
classifying each corner node as <S* or >S*, there were 28 = 256 possible ways that it could
happen, but of those 256, there were only 15 unique cases which needed to be handled.
Even so, this is difficult, and so we will look at another approach.

mjb – March 12, 2019

45

Computer Graphics

p6: i+1,j+1,k+1

3

9

7

10
2

6

5

1

8

11

0

4

p0: i,j,k

p5: i+1,j,k+1p4: i,j,k+1

p1: i+1,j,k

p2: i+1,j+1,k

p7: i,j+1,k+1

p3: i,j+1,k

X

Z

Y

Polygonal Isosurfaces: Data Organization Diagram

mjb – March 12, 2019

46

Computer Graphics

bool FoundEdgeIntersection[12]

One entry for each of the 12 edges.

false means S* did not intersect this edge

true means S* did intersect this edge

Node EdgeIntersection[12]

If an intersection did occur on edge #i, Node[i] will contain the
interpolated x, y, z, nx, ny, and nz.

bool FoundEdgeConnection[12][12]

A true in entry [i][j] or [j][i] means that Marching Squares has decided there needs to be a
line drawn from Cube Edge #i to Cube Edge #j

Both entry [i][j] and [j][i] are filled so that it won’t matter which order you search in later.

Polygonal Isosurfaces: Data Structures

0

1
2
3
4
5

6
7
8
9

10
11

0 1 2 3 4 5 6 7 8 9 10 11

mjb – March 12, 2019

47

Computer Graphics

Strategy in ProcessCube():

1. Use ProcessCubeEdge() 12 times to find which cube edges have S*
intersections.

2. Return if no intersections were found anywhere.

3. Call ProcessCubeQuad() 6 times to decide which cube edges will need
to be connected. This is Marching Squares like we did it before, but it doesn’t
need to re-compute intersections on the cube edges in common.
ProcessCubeEdge() already did that. This leaves us with the
FoundEdgeConnection[][] array filled.

4. Call DrawCubeTriangles() to create triangles from the connected edges.

Polygonal Isosurfaces: Algorithm

mjb – March 12, 2019

48

Computer Graphics

Strategy in DrawCubeTriangles():

1. Look through the FoundEdgeConnection[][] array for a Cube Edge #A and a Cube
Edge #B that have a connection between them.

2. If can’t find one, then you are done with this cube.

3. Now look through the FoundEdgeConnection[][] array for a Cube Edge #C that is
connected to Cube Edge #B. If you can’t find one, something is wrong.

4. Draw a triangle using the EdgeIntersection[] nodes from Cube Edges #A, #B, and
#C. Be sure to use glNormal3f() in addition to glVertex3f().

5. Turn to false the FoundEdgeConnection[][]entries from Cube Edge #A to Cube
Edge #B.

6. Turn to false the FoundEdgeConnection[][]entries from Cube Edge #B to Cube
Edge #C.

7. Toggle the FoundEdgeConnection[][]entries from Cube Edge #C to Cube Edge #A.
If this connection was there before, we don’t need it anymore. If it was not there before,
then we just invented it and we will need it again.

Polygonal Isosurfaces: Algorithm

9

mjb – March 12, 2019

49

Computer Graphics

B

C
D

A

E

F
G

Polygonal Isosurfaces: Why Does This Work?

Take this case as an example. The intersection points A, B, C,
and D were found and the lines AB, BC, CD, and DA were found
because Marching Squares will have been performed on each of
the cube’s 6 faces.

At this point, we could just draw the quadrilateral ABCD, but this
will likely go wrong because it is surely non-planar. So, starting at
A, we break out a triangle from the edges AB and BC (which
exist) and the edge CA (which doesn’t exist, but we need it
anyway to complete the triangle).

When we toggle the FoundEdgeConnection[][] entries for
AB and BC, they turn from true to false. When we toggle the
FoundEdgeConnection[][] for CA, it turns from false to true.

This leaves the FoundEdgeConnection[][] for CA, CD, and
AD all set to true, which will cause the algorithm to find them and
connect them into a triangle next.

Note that this algorithm will eventually find and properly connect
the little triangle in the upper-right corner, even though it has no
connection with A-B-C-D.

A B C D

A

B
C
D

T

T

TT
T

T

T

E FG

G
E

F

T

T

T

T

T

T

T

mjb – March 12, 2019

50

Computer Graphics

We would very much like to use lighting when displaying polygonal isosurfaces, but we need surface
normals at all the triangle vertices. Because there really isn’t a surface there, this would seem difficult,
but it’s not.

Polygonal Isosurfaces: Pseudo-Surface Normals

Envision a balloon with a dot painted on it. Think of this balloon as an
isosurface. Blow up the balloon a little more. This is like changing S*,
resulting in a different isosurface. Where does the dot end up?

The dot moves in the direction of the changing
isosurface, which is the normal to the balloon surface .

Now, turn that sentence around:

The normal to the isosurface is a vector that shows
how the isosurface is changing.

How “something is changing” is called the gradient. So, the
surface normal to a volume is:

(, ,)
dS dS dS

n S
dx dy dz

  


Prior to the isosurface calculation, you compute the
surface normals for all the nodes in the 3D mesh. You
then interpolate them along the cube edges when you
create the isosurface triangle vertices.

mjb – March 12, 2019

51

Computer Graphics

Polygonal Isosurfaces

Joe Graphics’s C program

Joe Graphics using OpenDX

mjb – March 12, 2019

52

Computer Graphics

Putting It All Together

