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Scalar Visualization

scalar.pptx
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In Visualization, we Use the Concept of a Transfer Function
to set Color as a Function of Scalar Value

Scalar Value

C
ol

or
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A Gallery of Color Scale Transfer Function Possibilities

We will cover this in more detail in the color notes.
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Glyphs

Glyphs are small symbols that can be placed at the location of data 
points.  In 2D, we often call this a scatterplot.  The glyph itself can 
convey information using properties such as:

• Type
• Color
• Size
• Orientation
• Transparency
• Features

The OpenDX AutoGlyph function gives you these type options:
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OpenDX Scalar Glyphs

DiamondCircleSquare

Cube Sphere
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LIGO Gravity Glyphs

Can also use shape to convey data-meaning

Hitting the secret Easter Egg key 
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Using 3D Glyphs is called a Point Cloud

Orthographic Projection results in the row-of-corn problem Perspective Projection results in the Moiré problem

Good for overall patterns -- bad for detail
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You See the Same Moiré Patterns Everywhere…
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struct node
{

float x, y, z;
float s;
float r, g, b;

};

struct node   Nodes[NX][NY][NZ];

A Simple Point Cloud Data Structure

mjb – March 12, 2019

10

Computer Graphics

In OpenGL . . .

float delx = ( XMAX – XMIN ) / (float)(NX-1);
float dely = ( YMAX – YMIN ) / (float)(NY-1);
float delz = ( ZMAX – ZMIN ) / (float)(NZ-1);

glPointSize( 2. );
glBegin( GL_POINTS );

float x = XMIN;
for( int i=0; i < NX; i++, x += delx )
{                               

float y = YMIN;
for( int j=0; j < NY; j++, y += dely )
{                                                                                               

float z = ZMIN;
for( int k=0; k < NZ; k++, z += delz )
{                                                                                                               

float scalar = Nodes[i][j][k].s;
float r = ???;
float g = ???;
float b = ???;
glColor3f( r, g, b );
glVertex3f( x, y, z );

}                                       
}                                               

}    

glEnd( );

NX = 4 means that we have 3 gaps
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float x = -1. + 2. * (float)i / (float)(NX-1);

float y = -1. + 2. * (float)j / (float)(NY-1);

float z = -1. + 2. * (float)k / (float)(NZ-1);

Computing x, y, and z

Note that x, y, and z can be computed at each node point by just keeping track of them 
and incrementing them each time through their respective loop, as shown on the 
previous page.  They can also be computed from the loop index like this:

i

0

NX-1

x

-1.

1.

0 ( 1.)

( 1) 0 1.( 1.)

i x

NX

  


  
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Jitter Gives a Better Point Cloud Display

Orthographic Projection Perspective Projection
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Point Cloud Culling Using Range Sliders

Full data Low values culled
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slider = Glui->add_slider( true, GLUI_HSLIDER_FLOAT, SLowHigh, S, (GLUI_Update_CB) Sliders );

slider->set_float_limits( SLowHigh[0], SLowHigh[1] );
slider->set_slider_val(   SLowHigh[0], SLowHigh[1] );
slider->set_w( SLIDERWIDTH );

sprintf( str, SFORMAT, SLowHigh[0], SLowHigh[1] );
SLabel = Glui->add_statictext_to_panel( rollout, str );

#define S       0

const char *SFORMAT = { "S: %.3f - %.3f" };

float   SLowHigh[2];

GLUI_StaticText *SLabel;

void
Sliders( int id )
{

char str[256];
switch( id )
{

case S:
sprintf( str, SFORMAT, SLowHigh[0], SLowHigh[1] );
SLabel->set_text( str );
break;

Using Range Sliders

mjb – March 12, 2019

15

Computer Graphics

Drawing the Range Slider-Filtered Point Cloud

float x = XMIN;
for( int i=0; i < NX; i++, x += delx )
{                               

if( x < XLowHigh[0]  ||  x > XLowHigh[1] )
continue;       

float y = YMIN;
for( int j=0; j < NY; j++, y += dely )
{                                               

if( y < YLowHigh[0]  ||  y > YLowHigh[1] )
continue;       

float z = ZMIN;
for( int k=0; k < NZ; k++, z += delz )
{                                               

if( z < ZLowHigh[0]  ||  z > ZLowHigh[1] )
continue;       

if( Nodes[i][j][k].s < SLowHigh[0]  ||  Nodes[i][j][k].s > SLowHigh[1] )
continue;               

. . .

glColor3f( r, g, b );
glVertex3f( x, y, z);

}                                       
}                                               

}    

glEnd( );
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Enhanced Point Clouds

• Color

• Alpha

• Pointsize
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Point Clouds are nice, but they only tell us about the gross patterns.
We want more detail !
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Here’s the situation: we have a 2D grid of data points.  At each node, 
we have an X, Y, Z, and a scalar value S.  We know Smin, Smax, and 
the Transfer Function.

Even though this is a 2D technique, we keep around the X, Y, and Z 
coordinates so that the grid doesn’t have to lie in any particular plane.

2D Interpolated Color Plots

T

U
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2D Interpolated Color Plots

We deal with one square of the mesh at a time:

X0, Y0, Z0, S0 X1, Y1, Z1, S1

X3, Y3, Z3, S3X2, Y2, Z2, S2
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2D Interpolated Color Plots

Within that one square, we let OpenGL do the color interpolation for us

void
ColorSquare( . . .)
{

Compute an r, g, b for S0

glColor3f( r, g, b );
glVertex3f( X0, Y0, Z0 );

Compute an r, g, b for S1

glColor3f( r, g, b );
glVertex3f( X1, Y1, Z1 );

Compute an r, g, b for S3

glColor3f( r, g, b );
glVertex3f( X3, Y3, Z3 );

Compute an r, g, b for S2

glColor3f( r, g, b );
glVertex3f( X2, Y2, Z2 );

}

Note the order: 0-1-3-2 !

Use the 
Transfer 
Function
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2D Interpolated Color Plots

Then we loop through all squares:

glShadeModel( GL_SMOOTH );
glBegin( GL_QUADS );
for( int i = 0;  i < numT - 1;  i++ )
{

for( int j = 0;  j < numU-1;  j++ )
{

ColorSquare( i, j, … );
}

}
glEnd( );
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2D Contour Lines

Here’s the situation: we have a 2D grid of data points.  At each node, 
we have an X, Y, Z, and a scalar value S.  We know the Transfer 

Function.  We also have a particular scalar value, S*, at which we 
want to draw the contour line(s).

Even though this is a 2D technique, we keep around the X, Y, and Z 
coordinates so that the grid doesn’t have to lie in any particular plane.

T

U

mjb – March 12, 2019

23

Computer Graphics
http://www.digital-topo-maps.com

Hiking Maps are a Great Use for Contour Lines
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Hiking Maps are a Great Use for Contour Lines
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2D Contour Lines: Marching Squares

Rather than deal with the entire grid, we deal with one square at a time, 
marching through them all.  For this reason, this method is called the 
Marching Squares.

X0, Y0, Z0, S0 X1, Y1, Z1, S1

X3, Y3, Z3, S3X2, Y2, Z2, S2
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Marching Squares: A Cluster of Connected Line Segments

What’s really happening is that we are not creating contours by connecting 
points into a complete curve.  We are creating contours by drawing a 
collection of  2-point line segments, safe in the knowledge that those line 
segments will align across square boundaries.
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Does S* cross any edges of this square?

X0, Y0, Z0, S0 X1, Y1, Z1, S1

Linearly interpolating the scalar value from node 0 to node 1 gives:

0 1 0 1 0(1 ) ( )S t S tS S t S S     

where     0. ≤ t ≤ 1.

Setting this interpolated S equal to S* and solving for t gives:

0

1 0

*
*

S S
t

S S






S*

t
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Interpreting t*: Where does S* cross the edge?

0

0

1 0

*
*

S S
t

S S






1

t* ≤ 0. t* ≥ 1.0. ≤ t* ≤ 1.

X*, Y*, Z*, S*

If 0. ≤ t ≤ 1., then S* crosses this edge.  You can compute where S* crosses the 
edge by using the same linear interpolation equation you used to compute t*:

0 1 0* *( )X X t X X  

0 1 0* *( )Y Y t Y Y  

0 1 0* *( )Z Z t Z Z  
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Do this for all 4 edges – when you are done, there are 5 
possible ways this could have turned out

# of intersections = 0: Do nothing

# of intersections = 2: Draw a line from the first 
intersection to the second

# of intersections = 1: Error!  This implies that the contour line 
got into the square and never got out

# of intersections = 3:
Error!  This implies that the contour line 
got into the square and never got out

# of intersections = 4: Coming up shortly

Situation Action
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What if S1 == S0 (i.e., t*=∞?)

0
0

1 0

*
*

S S
t

S S






1

t* ≤ 0. t* ≥ 1.0. ≤ t* ≤ 1.

Surprisingly, you just ignore this edge.  Why?  There are 2 possibilities.  Let S* = 80

S1 == S0 == S*

80 80

7060

Ignore this edge

Intersections with these 
edges create 2 points

S1 == S0 != S*

60 60

7090

Intersections with these 
edges create 2 points

Ignore this edge
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The 4-intersection Case

If there are 4 edge intersections with S*, 
then this must mean that, going around the 
square, the nodes are >S*, <S*, >S*, and 
<S* in that order.  This gives us a saddle 
function, shown here in cyan.

If we think of the scalar values as terrain 
heights, then we can think of S* as the 
height of water that is flooding the terrain, 
as shown here in magenta.
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My Favorite Saddle Function  :-)
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The 4-intersection Case

The exact contour curve is shown in yellow,  The Marching Squares contour line is shown in 
green.  Notice what happens as we lower S* -- there is a change in which sides of the square get 
connected.  That change happens when S* > M becomes S* < M (where M is the middle scalar 
value).

S* > M S* < M

mjb – March 12, 2019

34

Computer Graphics

The 4-intersection Case:
Computing the middle scalar value, M

01 0 1( ) (1 )S t t S tS  

Let’s linearly interpolate scalar values along the 0-1 edge, and along the 2-3 edge:

0 1 2 3( , ) (1 )(1 ) (1 ) (1 )S t u t u S t u S t uS tuS       

23 2 3( ) (1 )S t t S tS  

Now linearly these two linearly-interpolated scalar values:

01 23( , ) (1 )S t u u S uS  

Expanding gives:

This is the bilinear interpolation equation.  Notice the similarity to the linear equation.
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0 1 2 3
0 1 2 3

1 1 1 1 1 1
( , )
2 2 4 4 4 4 4

S S S S
M S S S S S

  
     

The middle scalar value, M, is what you get when you set t = .5 and u = .5:

0 1 2 3( , ) (1 )(1 ) (1 ) (1 )S t u t u S t u S t uS tuS       

Thus, M is the average of the corner scalar values.  (We could maybe have come to 
this intuitively, but it was worthwhile to actually prove it.)

The 4-intersection Case:
Computing the middle scalar value, M
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The 4-intersection Case

The logic for the 4-intersection case is as follows:

1. Compute M
2. If S0 is on the same side of M as S* is, then connect the 0-1 and 0-2 

intersections, and the 1-3 and 2-3 intersections
3. Otherwise, connect the 0-1 and 1-3 intersections, and the 0-2 and 2-3 

intersections
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Overall Logic for a Set of Contour Lines

for( float S* = Smin ;  S* <= Smax ;  S* += ΔS )
{

Set  color  for  S*
glBegin( GL_LINES );

for( int i = 0;  i < numT - 1;  i++ )
{

for( int j = 0;  j < numU-1;  j++ )
{

Process the square whose corner is at (i,j)
}

}
glEnd( );

}

Note that it is bad programming practice to use a 
floating-point variable to index the S* for-loop! 

This has been done just to illustrate the concept.
Instead do this:

Using floats in a for-loop is a bad 
programming practice!

int is;
float S*;
for( is = 0, S* = Smin ;  is < numS ;  is++, S* += ΔS )
{

. . .
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Artifacts?

90 60

7090

What if the distribution of scalar values along the square edges isn’t linear? 

We have no basis to assume anything, actually.  So linear is as good as any other guess, and 
lets us consider just one square by itself.  Some people like looking at adjacent nodes and 
using quadratic or cubic interpolation on the edge.  This is harder to deal with computationally, 
and is also making an assumption for which there is no evidence..

What if you have a contour that really looks like this?

You’ll never know.  We can only deal with what data we’ve 
been given.

There is no substitute for having an adequate number of 
data points.

S* = 80

What if we subdivide the square and interpolate values?  Does that help?

90 60

7090

S* = 80 90

80

65

75

77.5
No.  We can only deal with what data we’ve been given.
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And, of course, if you can do it in one plane,
you can do it in multiple planes

Remember this!  In a moment, we are going to put this to use 
in a different way, to create wireframe isosurfaces . . .
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0 1 2 3 4 5 6 7( , , ) (1 )(1 )(1 ) (1 )(1 ) (1 ) (1 ) (1 ) (1 )(1 ) (1 ) (1 )S t u v t u v S t u v S t u v S tu v S t u vS t u vS t uvS tuvS                   

S7
S6

S5
S4

S3S2

S1S0

While we’re at it:
Trilinear interpolation

u

v

t

This is useful, for example, if we have passed an oblique cutting 
plane through a 3D mesh of points and are trying to interpolate 
scalar values from the 3D mesh to the 2D plane. 
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Isosurfaces

A contour line is often called an isoline, that is a line of equal value.  When hiking, 
for example, if you could walk along a single contour line of the terrain, you would 
remain at the same elevation.

An isosurface is the same idea, only in 3D.  It is a surface of equal value.  If you 
could be a fly walking on the isosurface, you would always experience the same 
scalar value (e.g., temperature).

Sometimes the shapes of the isosurfaces have a physical meaning, such as with 
bone, skin, clouds, etc.  Sometimes the shape just helps turn an abstract notion into 
something physical to help us gain insight.
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Wireframe Isosurfaces

Once you have done Marching Squares for 
contour lines, doing wireframe isosurfaces is 
amazingly easy.  If I had to come up with a 
name for this, I’d call it Marching Planes.

The strategy is that you pick your S*, then draw 
S* contours on all the parallel XY planes.  Then 
draw S* contours on all the parallel XZ planes.  
Then draw S* contours on all the parallel YZ
planes.  And, then you’re done.

What you have looks like it is a connected 
surface mesh, but in fact it is just independent 
curves.  It is easy to program (once you’ve 
done Marching Squares at least), and looks 
good.  Also, it’s fast to compute.

Here’s the situation: we have a 3D grid of data points.  At each node, we have an X, Y, Z, 
and a scalar value S.  We know the Transfer Function.  We also have a particular scalar 
value, S*, at which we want to draw the isosurface(s).
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Overall Logic for a Wireframe Isosurface

Set  color  for  S* 
glBegin( GL_LINES );

for( int k = 0;  k < numV;  k++ )
{

for( int i = 0;  i < numT - 1;  i++ )
{

for( int j = 0;  j < numU-1;  j++ )
{

Process square whose corner is at (i,j,k) in TU plane
}

}
}

for( int i = 0;  i < numT ;  i++ )
{

for( int k = 0;  k < numV-1;  k++ )
{

for( int j = 0;  j < numU-1;  j++ )
{

Process square whose corner is at (i,j,k) in UV plane
}

}
} 

for( int j = 0;  j < numU;  j++ )
{

for( int i = 0;  i < numT - 1;  i++ )
{

for( int k = 0;  k < numV-1;  k++ )
{

Process square whose corner is at (i,j,k) in TV plane
}

}
}
glEnd( );
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Polygonal Isosurfaces

The original polygonal isosurface Marching Cubes algorithm used the observation that when 
classifying each corner node as <S* or >S*, there were 28 = 256 possible ways that it could 
happen, but of those 256, there were only 15 unique cases which needed to be handled.   
Even so, this is difficult, and so we will look at another approach.
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p6: i+1,j+1,k+1

3

9

7

10
2

6

5

1

8

11

0

4

p0: i,j,k

p5: i+1,j,k+1p4: i,j,k+1

p1: i+1,j,k

p2: i+1,j+1,k

p7: i,j+1,k+1

p3: i,j+1,k

X

Z

Y

Polygonal Isosurfaces: Data Organization Diagram
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bool FoundEdgeIntersection[12]

One entry for each of the 12 edges.

false means S* did not intersect this edge

true means S* did intersect this edge

Node EdgeIntersection[12]

If an intersection did occur on edge #i, Node[i] will contain the 
interpolated x, y, z, nx, ny, and nz.

bool FoundEdgeConnection[12][12]

A true in entry [i][j] or [j][i] means that Marching Squares has decided there needs to be a 
line drawn from Cube Edge #i to Cube Edge #j

Both entry [i][j] and [j][i] are filled so that it won’t matter which order you search in later.

Polygonal Isosurfaces: Data Structures

0

1
2
3
4
5

6
7
8
9

10
11

0 1 2 3 4 5 6 7 8 9 10 11
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Strategy in ProcessCube():

1. Use ProcessCubeEdge() 12 times to find which cube edges have S* 
intersections.

2. Return if no intersections were found anywhere.

3. Call ProcessCubeQuad() 6 times to decide which cube edges will need 
to be connected.  This is Marching Squares like we did it before, but it doesn’t 
need to re-compute intersections on the cube edges in common.  
ProcessCubeEdge() already did that.  This leaves us with the 
FoundEdgeConnection[][] array filled.

4. Call DrawCubeTriangles() to create triangles from the connected edges.

Polygonal Isosurfaces: Algorithm
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Strategy in DrawCubeTriangles():

1. Look through the FoundEdgeConnection[][] array for a Cube Edge #A and a Cube 
Edge #B that have a connection between them.

2. If can’t find one, then you are done with this cube.

3. Now look through the FoundEdgeConnection[][] array for a Cube Edge #C that is 
connected to Cube Edge #B.  If you can’t find one, something is wrong.

4. Draw a triangle using the EdgeIntersection[] nodes from Cube Edges #A, #B, and 
#C.  Be sure to use glNormal3f() in addition to glVertex3f().

5. Turn to false the FoundEdgeConnection[][]entries from Cube Edge #A to Cube 
Edge #B.

6. Turn to false the FoundEdgeConnection[][]entries from Cube Edge #B to Cube 
Edge #C.

7. Toggle the FoundEdgeConnection[][]entries from Cube Edge #C to Cube Edge #A.  
If this connection was there before, we don’t need it anymore.  If it was not there before, 
then we just invented it and we will need it again.

Polygonal Isosurfaces: Algorithm
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B

C
D

A

E

F
G

Polygonal Isosurfaces: Why Does This Work?

Take this case as an example.  The intersection points A, B, C, 
and D were found and the lines AB, BC, CD, and DA were found 
because Marching Squares will have been performed on each of 
the cube’s 6 faces.

At this point, we could just draw the quadrilateral ABCD, but this 
will likely go wrong because it is surely non-planar.  So, starting at 
A, we break out a triangle from the edges AB and BC (which 
exist) and the edge CA (which doesn’t exist, but we need it 
anyway to complete the triangle).

When we toggle the FoundEdgeConnection[][] entries for 
AB and BC, they turn from true to false.  When we toggle the 
FoundEdgeConnection[][] for CA, it turns from false to true.  

This leaves the FoundEdgeConnection[][] for CA, CD, and 
AD all set to true, which will cause the algorithm to find them and 
connect them into a triangle next.

Note that this algorithm will eventually find and properly connect 
the little triangle in the upper-right corner, even though it has no 
connection with A-B-C-D.

A B C D

A

B
C
D

T

T

TT
T

T

T

E FG

G
E

F

T

T

T

T

T

T

T
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We would very much like to use lighting when displaying polygonal isosurfaces, but we need surface 
normals at all the triangle vertices.  Because there really isn’t a surface there, this would seem difficult, 
but it’s not. 

Polygonal Isosurfaces: Pseudo-Surface Normals

Envision a balloon with a dot painted on it.  Think of this balloon as an 
isosurface.  Blow up the balloon a little more.  This is like changing S*, 
resulting in a different isosurface.  Where does the dot end up?

The dot moves in the direction of the changing 
isosurface, which is the normal to the balloon surface .

Now, turn that sentence around:

The normal to the isosurface is a vector that shows 
how the isosurface is changing.

How “something is changing” is called the gradient.  So, the 
surface normal to a volume is:

( , , )
dS dS dS

n S
dx dy dz

  


Prior to the isosurface calculation, you compute the 
surface normals for all the nodes in the 3D mesh.  You 
then interpolate them along the cube edges when you 
create the isosurface  triangle vertices.
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Polygonal Isosurfaces

Joe Graphics’s C program

Joe Graphics using OpenDX
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Putting It All Together


