
1

mjb – March 12, 2019

1

Computer Graphics

Vector Visualization

vector.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – March 12, 2019

2

Computer Graphics

What is a Vector Visualization Problem?

A vector has direction and magnitude. Typically science and engineering
problems that work this way are those involving fluid flow through a velocity field.

Whee !Whee !

Whee !

mjb – March 12, 2019

3

Computer Graphics

http://mathforum.org/mathimages/index.php/Vector_Fields

http://www.physicsdaily.com/physics/Image:Vectorfield_jaredwf.png

Chuck Evans

Examples

mjb – March 12, 2019

4

Computer Graphics

Example – Hurricane Irma (September 2017)

mjb – March 12, 2019

5

Computer Graphics

It Doesn’t Always Have to be Physically-Moving Flow:
Things Like Magnetic Fields Count Too

http://www.physics.sjsu.edu/becker/physics51/mag_field.htm

This very cool magnetic wand
toy consists of a small bar
magnet on a universal joint, and
is a good way to give a physical
feel to magnetic fields. (You
can get these from Edmund
Scientific.)

mjb – March 12, 2019

6

Computer Graphics

Two Types of Vector Visualization

1. What does the field itself look like?

2. What do things placed in the field do?

2

mjb – March 12, 2019

7

Computer Graphics

What Does the Field Look Like? Glyphs

The most straightforward way to see what the field looks like is to
place glyphs throughout the field.

The OpenDX AutoGlyph function gives
you these type options:

mjb – March 12, 2019

8

Computer Graphics

Rocket

Arrow

Needle

OpenDX Vector Glyphs

mjb – March 12, 2019

9

Computer Graphics

A Cool Wind Speed and Direction Glyph

Wolfgang Bloem

mjb – March 12, 2019

10

Computer Graphics

What Does the Field Look Like? Glyphs as Vector Clouds

In the same way that a point cloud was a simple way to visualize a scalar field, a
Vector Cloud is a simple way to visualize a vector field. Go to selected points in
the data volume, look up the velocity vector there (vx, vy, vz), and draw an arrow
centered around that point. The arrow’s direction shows the direction of flow.
The arrow’s length shows the magnitude of the velocity field (i.e., its speed).

Nuance alert: the size of the arrow comes out in whatever units the velocity field
is defined in, and might be too small to be seen or so large that it clutters the
screen. You typically have to uniformly scale all the arrows to make the display
useful.

Bad Better

mjb – March 12, 2019

11

Computer Graphics

Drawing an Arrow

It’s surprisingly involved to draw a good-looking 3D arrow. So, you’ve been
given a C/C++ function to do it for you. Use it like this:

float tail[3], head[3];
. . .
// Center a 3D arrow at the point (x,y,z) indicating a
// velocity there of (vx,vy,vz):

tail[0] = x – Scale*vx/2.;
tail[1] = y – Scale*vy/2.;
tail[2] = z – Scale*vz/2.;

head[0] = x + Scale*vx/2.;
head[1] = y + Scale*vy/2.;
head[2] = z + Scale*vz/2.;

Arrow(tail, head);

Arrow() uses OpenGL lines, so the current line width and current color can be set as usual:

glLineWidth(w); // number of pixels wide (floating point), ≥ 1.
glColor3f(r, g, b); // red, green, blue in the range 0.-1.
Arrow(tail, head);

The arrows also get transformed along with everything else.

mjb – March 12, 2019

12

Computer Graphics

Turning it Into a Scalar Problem:
Magnitude Isosurfaces

3

mjb – March 12, 2019

13

Computer Graphics

Particle Advection

Vector Clouds are OK, but we can do more. The next step is to think about what
would happen if we released an imaginary massless ping-pong ball somewhere
in the velocity field. Where would it go? This is called Particle Advection.

?

mjb – March 12, 2019

14

Computer Graphics

Taking a First Order Step

If we are at Point A, and the velocity field is as shown, how do we know where we
end up next?

Easy, right? We look at the velocity field at Point A, and take a step in that
direction, ending up at Point B.

This is called a First Order Step. It is also sometimes called Euler’s Method.

A

B

mjb – March 12, 2019

15

Computer Graphics

Taking a First Order Step

void
Advect(float *x, float *y, float *z)
{

xa = *x; ya = *y; za = *z;

GetVelocity(xa, ya, za, &vxa, &vya, &vza);

xb = xa + TimeStep*vxa;
yb = ya + TimeStep*vya;
zb = za + TimeStep*vza;

*x = xb; *y = yb; *z = zb;
}

mjb – March 12, 2019

16

Computer Graphics

All is Not Right: the Spiral Problem

Assume we have a vector field
that moves in a circle, that is:
vx = - y
vy = x

Which puts you on a larger radius. The next First Order step puts you on an even
larger radius. And so on, and so on. What should be circular motion has now
become spiraling-out motion.

(x, y)

Now, take a First Order step, and you move like this:

mjb – March 12, 2019

17

Computer Graphics

All is Not Right with First Order

Clearly something is not right. While we were taking that straight-
line step, the velocity field was changing underneath us, and we
weren’t taking it into account.

Obviously, we could simply take smaller time steps, but that
wouldn’t solve the problem, just make it smaller. And, in the
process, it could take lots longer to compute.

A

B

mjb – March 12, 2019

18

Computer Graphics

Taking a Second Order Step

A

B

Here’s another approach. Let’s assume that the field change during the time step
is linear so that the average velocity vector during the step is the average of the
velocity vector at A and the velocity vector at B. You do this by adding up the
individual x, y, and z vector components and dividing by 2:

This is called a Second Order Step.

And, of course, you can continue this way
even more.

Average the velocity vectors at A and C, take a
step in that direction, and call it D.

Average the velocity vectors at A and D, take a
step in that direction, and call it E.

C

4

mjb – March 12, 2019

19

Computer Graphics

void
Advect(float *x, float *y, float *z)
{

xa = *x; ya = *y; za = *z;

GetVelocity(xa, ya, za, &vxa, &vya, &vza);

xb = xa + TimeStep*vxa;
yb = ya + TimeStep*vya;
zb = za + TimeStep*vza;

GetVelocity(xb, yb, zb, &vxb, &vyb, &vzb);

vx = (vxa + vxb) / 2.;
vy = (vya + vyb) / 2.;
vz = (vza + vzb) / 2.;

xc = xa + TimeStep*vx;
yc = ya + TimeStep*vy;
zc = za + TimeStep*vz;

*x = xc; *y = yc; *z = zc;
}

Taking a Second Order Step

First Order Code
mjb – March 12, 2019

20

Computer Graphics

The World’s Largest Particle Advection Experiment 

mjb – March 12, 2019

21

Computer Graphics

The World’s Largest Particle Advection Experiment 

mjb – March 12, 2019

22

Computer Graphics

Streamlines

Using particle advection, we could animate little ping-pong balls flying through the
field. We can also take the particle advection idea and create other
geometrizations.

In this case, we are going to advect a particle and draw a line between its
locations at successive time steps. This is called a Streamline. Because of the
nature of particle advection, the tangent of the streamline curve always shows the
direction of the velocity field there.

mjb – March 12, 2019

23

Computer Graphics

Streamlines

void
Streamline(float x, float y, float z)
{

glLineWidth(2.);
glColor3f(??, ??, ??);
glBegin(GL_LINE_STRIP);

for(int i = 0; i < MAX_ITERATIONS; i++)
{

if(x < Xmin || x > Xmax) break;
if(y < Ymin || y > Ymax) break;
if(z < Zmin || z > Zmax) break;

glVertex3f(x, y, z);

GetVelocity(x, y, z, &vx, &vy, &vz);
if(||vx,vy,vz|| < SOME_TOLERANCE) break;

Advect(&x, &y, &z);
}
glEnd();

}

1

2

3

Three reasons to
stop drawing the
streamline

mjb – March 12, 2019

24

Computer Graphics

Streamlines and Particle Advection

National Center for Supercomputing Applications

5

mjb – March 12, 2019

25

Computer Graphics

Streaklines

So far, we have been treating the flow as if it was steady-state, that is, we are
advancing the streamline using a snapshot of the vector field information. What if
it’s not steady-state?

If we follow the same procedure, but use a new time’s vector field every time we
advance the streamline, then we have what is known as a streakline.

The formal definition of a streakline is the locus of fluid particles that have passed
through a specific starting point. Perhaps a more intuitive way to think about
streaklines is thinking about what would happen if some colored dye was
continuously injected into a flow field at a given point.

If the flow is steady-state, streamlines and streaklines are the same things.

mjb – March 12, 2019

26

Computer Graphics

Ribbon Traces

Envision a series of streamlines created from a row of starting points. But, every
time a time step is taken, the corresponding points on the streamlines are
connected and colored in. This is called a Ribbon Trace.

The big advantage of using a ribbon trace
is that it can show twisting motion in the
field (streamlines can’t)

mjb – March 12, 2019

27

Computer Graphics

Idea: start with a 3D shape and particle-advect each vertex. Then connect all the
vertices with the same topology that was used for the original 3D object.

Blob Tracing

Stretched object shows that the field is accelerating.

mjb – March 12, 2019

28

Computer Graphics

Streamtubes

A Streamtube is like a streamline, but with a finite
cross sectional area. (Which doesn’t have to be a
circle – “tube” is just what it is called.)

This makes your streamlines easier to see, and
allows you to plot other information in color on the
streamtube.

mjb – March 12, 2019

29

Computer Graphics

Curl

ˆˆ ˆy yx xz z
V VV VV V

V i j k
y z z x x y

                          

 

Curl and Divergence are referred to as “derived quantities” of a velocity field
because they are not, generally, part of the original data, but are computed during
the visualization.

The Curl tells you how much the field is curving. Think of it as the reciprocal of
the radius of curvature of a streamline. The equation of the curl looks like this:

This image shows the curl of a velocity field mapped as
color to a streamtube.

mjb – March 12, 2019

30

Computer Graphics

Divergence

yx z
VV V

V
x y z

 
   

  
�

The Divergence tells you how much the field is spreading out or compressing.
The equation of the divergence looks like this:

This image shows the divergence of a velocity field
mapped as color to a streamtube.

If the fluid that is flowing is incompressible, then the Conservation of Mass law
tells us that the divergence is zero everywhere.

6

mjb – March 12, 2019

31

Computer Graphics

Curl Range Sliders

Idea: Show where the field has a
particular range of curls.

Looking at just the large curls

mjb – March 12, 2019

32

Computer Graphics

Magnitude Range Sliders

Idea: Show where the field has a
particular range of magnitudes.

Looking at just the medium speeds

mjb – March 12, 2019

33

Computer Graphics

Line Integral Convolution

() (())
(,)

()

L

i L
L

i L

w i I S i
I x y

w i





 




Where S(i) is the streamline position “i” pixels away from the starting point, I() are
the contents of the white noise image, w(i) is the weight used for this pixel, and I’()
is the resulting image.

Line Integral Convolution (LIC) involves taking a white noise image and smearing it
in the directions of the flow, in this case, a circular flow:

+ =

Mathematically, we create each pixel in the output image by following a streamline
from that point (forwards and backwards) and performing a weighted average of all
pixels that the streamline touches in the white noise image:

mjb – March 12, 2019

34

Computer Graphics

3D Line Integral Convolution

Vasu Lakshmanan

You need to apply some amount
of decimation, or you can’t see
into the volume

mjb – March 12, 2019

35

Computer Graphics

Peristalsis

As long as you’re extruding some cross section to make a streamtube,
you can also animate a moving bulge through it.

John Datuin

mjb – March 12, 2019

36

Computer Graphics

How Big Should the Time Step Be?

One of the trickiest parts of doing good particle advection for any reason is deciding
how large to make the time step, Δt.

You could make it very, very tiny. That would give you good accuracy results, but
poor interaction.

You could make it large. That would give you good interactivity, but at a cost of
accuracy.

Clearly you need to find some way to adapt the time step to the situation.

One way is to think of the divergence and the curl as a way to measure how much the
flow at a certain location is deviating from constant-speed straight-line motion. The
larger the divergence and the curl, the smaller the time step should be.

7

mjb – March 12, 2019

37

Computer Graphics

How Big Should the Time Step Be?

Another way to do it is to check what would happen if two half-steps were
taken instead of one whole step:

void
TakeOneStep(float Δt, float * x0, float * y0, float * z0)
{

float xw, yw, zw;
xw = *x0; yw = *y0; zw = *z0; // one whole step
Advect(Δt, &xw, &yw, &zw);

float xh, yh, zh;
xh = *x0; yh = *y0; zh = *z0; // two half steps
Advect(Δt,/2. &xh, &yh, &zh) ;
Advect(Δt,/2., &xh, &yh, &zh) ;

if((xh,yh,zh) is “close enough” to (xw,yw,zw))
{

*x0 = xh; *y0 = yh; *z0 = zh;
return;

}

TakeOneStep(Δt, / 2., x0, y0, z0); // re-try with a smaller time
step

// note: x0,y0,z0 are float pointers
// x0, y0, z0 come back changed

TakeOneStep(Δt, / 2., x0, y0, z0);
}

