Generalized Bump-mapping with
Surface Local Coordinates

This work is licensed under a Creative Commons
ibution-NonC ial-NoDerivatives 4.0

International License

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

Univ
Computer Grapnics

The Most Straightforward Types of Bump-Mapping are Height Fields 2
Why?

Height Field bump-mapping is straightforward because the underlying coordinate
system is constant. Each fragment’s Z points up, each fragment’s X points right, etc.

) d d
Thus, the tangent vectors always involve i and j

UTEEUITOTAE

12/28/2024

Computer Graphics
mjb — December 24, 2023

utasel ocalCoordinates ppt imjo Docember 24,2023
What if that is not the case? Here, the coordinate system is 3

constantly changing, depending on where you are on the sphere

R
Oregon State

i
Computer Graphics
mjb — December 24, 2023

This is referred to as Surface Local Coordinates 4

To call these moving axes X-Y-Z would be
confusing. Rather than X-Y-Z, Surface Local
Coordinates are B-T-N:

« Nis the surface Normal vector, which we
usually know already

« Tis a Tangent vector

« B is the Bitangent, the other tangent vector
i

We will assume that we know the Normal everywhere because of how the
shape was modeled. Now, how do we find T and B? And, how do we convert
these to X-Y-Z?

Computer Graphics
mjb — December 24, 2023

Generalized Bump Mapping: A Problem 5

The problem is that we need to do lighting, but the lighting needs to
be done in X-Y-Z, but the bump information is in B-T-N!

We need to:
1. Figure out how to determine T and B, and,

2. Figure out how to convert B-T-N coordinates to X-Y-Z for
lighting

We will refer to the coordinates in the B-T-N system as (b,t,n). ‘

Oregon State

i
Computer Graphics

mjb— December 24, 2023

Bump Mapping: 6
Establishing the Surface Local Coordinate System
We need a second piece of information: Pick a general rule, e.g., “Tangent = up (0.,1.,0.)”
We then have two choices:
a. Use two cross-products to correctly orthogonalize it wrt the Normal /

b. Use the Gram-Schmidt rule to correctly orthogonalize it wrt the Norl

77

1l the vectors B-T-N form an X-Y-
I right handed coordinate syst:

vec3 N = normalize(gl_Nori
vec3 Tg, T; 1l Tgue
vec3 B;

IMatrix * gl_Normal);
angl corrected T

#define CROSS_PRODUCT_METHOD

#ifdef CROSS_PRQDUCT_METHOD

Tg = vec3(0.,1.,0.); Il guess at T
B = normalize(cross(Tg,N)); // correct B

T = normalize(cross(N,B)); // corrected T
#endif

#ifdef GRAM_SCHMIDT_METHOD

Cross Product Orthogonalization 7

vec3 Tg = vec3(0.,1.,0.); // initial guess
vec3 B = normalize(cross(Tg,N));
vec3 T = normalize(cross(N,B));

3 |

- - Take the cross product of N
Given that N is correct, how and B to get a T,vector that

1 do we change Tg to be is perpendicula\\to both

exactly perpendicular to N ?

Ty T

[2] - N

Take the cross product of Tg N

and N to get a B-ector that
is perpendiculamﬂw\

i
Computer Graphics

mib - December 24, 2023

Tg = vec3(0.,1.,0.); I/l guess at T
float d = dot(Tg, N);
it T = normalize(Tg- d*N); Il corrected T
DE"S;;@ 3 B = normalize(cross(T,N)); // correct B
Computer Graphics #endif
mijb — December 24, 2023
Gram-Schmidt Orthogonalization 8

vec3 Tg = vec3(0.,1.,0.); // initial guess
float d = dot(Tg, N);

vec3 T = normalize(Tg - d*N); 3

vec3 B = normalize(cross(T,N)); How much of Tg do we need
to get rid of so that none of it is

Tl {in the same direction as N?
’

Given that N is correct, how —dN
do we change Tg to be
exactly perpendicular to N?

4

~~ The resulting T is
perpendicular to N

How much‘of Tgisin the

Oregol same direction as N?
Universy——
Computer Graphics

mjb — December 24, 2023

12/28/2024

Bump Mapping: Converting Between Coordinate Systems

Converting from X-Y-Z to b-t-n:
b By By B, X
te=|T T, T,[{y
n) [N, N, Nz

Converting from b-t-n to X-Y-Z:
X By Ty Nx|(b
ye=1By T, Ny|jt
z) |B, T, N,|\n

| prefer to use the second one so we can do lighting

Computer Graphics in X-Y-Z like we are used to doing.

mjb— December 24, 2023

Generalized Bump Mapping: 10
Establishing the Surface Local Coordinate System

Vertex shader:

#version 330 compatibility

uniform vec3 uLightPosition;

outvec2 vST; /I texture coords

out vec3 wN; /I normal vector

out vec3 vi; 11 vector from point to light

out vec3 VE; /I vector from point to eye

out vec3 vBTNx, vBTNy, vBTNz;

void

main()

{
VN = normalize(gl_NormalMatrix * gl_Normal); /I normal vector
vec3 Tg = vec3(0.,1.,0.); /I guess
vec3 B = normalize(cross(Tg,vN));
vec3 T = normalize(cross(vN,B));
/I produce the transformation from Surface coords to Eye coor df x > b
VBTNX = vec3(B.x, T.x, W.x); D t
VBTNy =vec3(B.y, Ty, WN.y);
VBTNz = vec3(B.z T.z, W.z); T P n
VST = gl_MultiTexCoord0.st; I_\Ql___z____—
vec4 ECposition = gl_ModelViewMatrix * gl_Vertex; Il eye coordinate position
vL = uLightPosition - ECposition.xyz; /I vector from the point to the light position
VE = vec3(0., 0., 0.) - ECposition.xyz; 1/ vector from the point to the eye position
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Oregon State

Computer Graphics

mjb — December 24, 2023

12/28/2024

Generalized Bump Mapping:
Using the s-t-h to X-Y-Z Transform

Fragment shader:

#version 330 compatibility
uniform vec3 uColor;

uniform vec3 uSpecularColor;
uniform float uKa, uKd, uKs;
uniform float uShininess;
uniform float uBumpDensity;

/1 coefficients of each type of lighting
/I specular exponent
/I density of bumps

invec2 vST; /I texture cords

in vec3 vN; /I normal vector

in vec3 vL; /I vector from point to light
in vec3 VE; /I vector from point to eye
in vec3 VBTNx, vVBTNy, vVBTNz;

vec3
ToXyz(vec3 btn)
{

btn = normalize(btn);

vec3 xyz; B. T N

xyz.x = dot(vVBTNX, btn); x X x x| (b

xyz.y = dot(vVBTNy, btn); Y= By Ty Ny t

xyz.z = dot(vBTNz, btn); 2 B T N n
z z z

return normalize(xyz);

Look at this closely. It is actually a matrix-multiply!

i
Computer Graphics

1"

mib - December 24, 2023

Matrix Multiplication is Really Row-by-Row Dot Products 12

The basic operation of matrix multiplication is to pair-wise
multiply a single row by a single column

1°2 3] *)5
A 6 C

—> 41 +52+63—> 32

1x3 3x1 1x1

Computer Graphics

mjb — December 24, 2023

Generalized Bump Mapping: Using the Surface Local Transform, | 13

void

main()

{
vec3 Normal = normalize(vN);
vec3 Light = normalize(vL);
vec3 Eye = normalize(vE);

vec3 myColor = uColor; 11 default color

/'locate the bumps based on (s,t):

float Swidth = (1.-0.) / uBumpDensity; II's distance between bumps
float Theight = (1.-0.) / uBumpDensity; /1 t distance between bumps
float numInS = int(vST.s / Swidth); /I which "checker" square we are in
float numInT = int(vST.t / Theight); 1/ which "checker" square we are in

vec2 center;

center.s = numInS * Swidth + Swidth/2.; // center of that bump checker
center.t =numInT * Theight + Theight/2.; // center of that bump checker

vec2 st = vST - center; /I st is now wrt the center of the bump

float theta = atan(st.t, st.s);

Computer Graphics

mjb— December 24, 2023

Generalized Bump Mapping: Using the Surface Local Transform, I 14

{
}

else

{

;/é;:?, normal = ToXyz(Normal)); // un-bumped normal
if(abs(stp.s) > Swidth/4. || abs(stp.t) > Theight/4.)
normal = ToXyz(vec3(0.,0.,1.));

if(Pl/4. <= theta && theta <= 3.*Pl/4.)

{

}
else if(-Pl/4. <= theta && theta <= Pl/4.)
{

}
else if(-3.*Pl/4. <= theta && theta <=-Pl/4.)

{

}
else if(theta >= 3.*PI/4. || theta <= -3.*Pl/4.)

{
}

normal = ToXyz(vec3(0., Height, Theight/4.));

normal = ToXyz(vec3(Height, 0., Swidth/4.));

normal = ToXyz(vec3(0., -Height, Theight/4.));

normal = ToXyz(vec3(-Height, 0., Swidth/4.));

Computer Graphics

mjb — December 24, 2023

Generalized Bump Mapping: Using the Surface Local Transform, il 15

vec3 ambient = uKa * myColor;

floatd =0.;

float s = 0.

if(dot(normal,Light) > 0. // only do specular if the light can see the point
{

d = dot(normal,Light);
vec3 R = normalize(reflect(-Light, normal));
s = pow(max(dot(Eye,R), 0.), uShininess);

/I reflection vector

}

vec3 diffuse = uKd * d * myColor;

vec3 specular = uKs * s * uSpecularColor;
gl_FragColor = vec4(ambient + diffuse + specular, 1.);

i
Computer Graphics

mib - December 24, 2023

Oregon State

Computer Graphics

16

Changing the Bump Height

mjb — December 24, 2023

12/28/2024

12/28/2024

17
Changing the Bump Density

Different Objects

18

WAR RS S
\\\\\\-“‘_

VTSIt
Computer Graphics

Cow Pox? :-)
Computer Graphics
mjb — December 24, 2023

mjb — December 24, 2023

Combining Bump and Cube Mapping: 19
A Good Reason to Work in X-Y-Z instead of B-T-N

Combining Bump and Cube Mapping: 20
A Good Reason to Work in X-Y-Z instead of B-T-N

iversity
Computer Graphics

Computer Graphics
mjb — December 24, 2023

.e
AN N]

mjb — December 24, 2023

