Generalized Bump-mapping with Surface Local Coordinates

The Most Straightforward Types of Bump-Mapping are Height Fields

Why?

Height Field bump-mapping is straightforward because the underlying coordinate system is constant. Z always points up, X always points the right, etc.

This is referred to as Surface Local Coordinates

Rather than X-Y-Z, Surface Local Coordinates are B-T-N:
- N is the surface Normal
- T is the Tangent
- B is the Bitangent

We will assume that we know the Normal everywhere because of how the shape was modeled. Now, how do we find T and B? And, how do we convert these to X-Y-Z so we can draw as usual?

Bump Mapping: A Problem

The problem is that lighting information is in X-Y-Z, but the bump information is in B-T-N!

We need to:
1. Figure out how to determine T and B, and,
2. Figure out how to convert B-T-N to X-Y-Z for lighting

While we are at it, I like renaming the Surface Local Coordinates to (s,t,h) for (texture_s, texture_t, bump_height). This is the same as (B,T,N), but uses terminology that sounds like the way that we have been talking.

Bump Mapping: Converting Between Coordinate Systems

Converting from X-Y-Z to s-t-h:
\[
\begin{bmatrix}
 s \\
 t \\
 h \\
\end{bmatrix} =
\begin{bmatrix}
 B_x & B_y & B_z \\
 T_x & T_y & T_z \\
 N_x & N_y & N_z \\
\end{bmatrix}^{-1}
\begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix}
\]

Converting from s-t-h to X-Y-Z:
\[
\begin{bmatrix}
 x \\
 y \\
 z \\
\end{bmatrix} =
\begin{bmatrix}
 B_x & B_y & B_z \\
 T_x & T_y & T_z \\
 N_x & N_y & N_z \\
\end{bmatrix}
\begin{bmatrix}
 s \\
 t \\
 h \\
\end{bmatrix}
\]

I prefer to use the second one so we can do lighting in X-Y-Z like we are used to.
Bump Mapping:
Establishing the Surface Local Coordinate System

We need a second piece of information: Pick a general rule, e.g., “Tangent = up”
a. Use the Gram-Schmidt rule to correctly orthogonalize it wrt the Normal
b. Use two cross-products to correctly orthogonalize it wrt the Normal

1. If the vectors B-T-N form an X-Y-Z looking right handed coordinate system:
 - \(\text{vec3 } N = \text{normalize(gl_NormalMatrix } \times \text{gl_Normal)} \)
 - \(\text{vec3 } T; \)
 - \(\text{vec3 } B; \)
 - Define GRAM_SCHMIDT_METHOD
 - \#ifdef GRAM_SCHMIDT_METHOD
 - \(\text{vec3 } T = \text{vec3} (0., 1., 0.); \)
 - \(\text{float } d = \text{dot(T, N)}; \)
 - \(\text{vec3 } T = \text{normalize(} T - d \times N \text{)}; \)
 - \(\text{vec3 } B = \text{normalize(cross(T, N))}; \)
 - \#endif
 - \#ifdef CROSS_PRODUCT_METHOD
 - \(\text{vec3 } T = \text{vec3} (0., 1., 0.); \)
 - \(\text{vec3 } B = \text{normalize(cross(T, N))}; \)
 - \(\text{vec3 } T = \text{normalize(cross(N, B))}; \)
 - \#endif

2. We need a second piece of information: Pick a general rule, e.g., “Tangent ≈ up”
 a. Use the Gram-Schmidt rule to correctly orthogonalize it wrt the Normal
 b. Use two cross-products to correctly orthogonalize it wrt the Normal

Gram-Schmidt Orthogonalization

T = vec3(0., 1., 0.);
float d = dot(T, N);
T = normalize(T - d\times N);
B = normalize(cross(T, N));

ˆ
de T
dN

T' = T - d\hat{N} = T - (T \cdot \hat{N})\hat{N}

How much of T to we need to get rid of so that none of it is in the same direction as \(\hat{N} \)?

Given that \(N \) is correct, how do we change T to be exactly perpendicular to \(N \)?

The resulting \(T' \) is exactly perpendicular to \(N \).

The resulting \(T' \) is exactly perpendicular to \(N \).

Look at this closely. It is actually a matrix-multiply!

Generalized Bump Mapping:
Establishing the Surface Local Coordinate System

// Produce the transformation from Surface coords to Eye coords:
vec3 BTNx = vec3(B.x, T.x, N.x);
vec3 BTNy = vec3(B.y, T.y, N.y);
vec3 BTNz = vec3(B.z, T.z, N.z);
// where the light is coming from:
vec3 LightPosition = vec3(LightX, LightY, LightZ);
vec3 ECposition = (gl_ModelViewMatrix \times gl_Vertex).xyz;
DirToLight = normalize(LightPosition - ECposition);
gl_Position = gl_ModelViewProjectionMatrix \times gl_Vertex;

Generalized Bump Mapping:
Using the s-t-h to X-Y-Z Transform

vec3 ToXyz(vec3 sth)
{
 sth = normalize(sth);
 vec3 xyz;
 xyz.x = dot(BTNx, sth);
 xyz.y = dot(BTNy, sth);
 xyz.z = dot(BTNz, sth);
 return normalize(xyz);
}

Generalized Bump Mapping: Using the Surface Local Transform

void main()
{
 const float PI = 3.14159265;
 vec2 st = vST; // locate the bumps based on (s,t)
 float Swidth = 1. / BumpDensity;
 float Theight = 1. / BumpDensity;
 float numInS = floor(st.s / Swidth);
 float numInT = floor(st.t / Theight);
 vec2 center;
 center.s = numInS * Swidth + Swidth/2.;
 center.t = numInT * Theight + Theight/2.;
 vec3 stp = st - center; // st' is now wrt the center of the bump
 float theta = atan(stp.t, stp.s);
 vec3 normal = ToXyz(vec3(0., 0., 1.)); // un-bumped normal
 if(abs(stp.s) > Swidth/4. || abs(stp.t) > Theight/4.)
 {
 normal = ToXyz(vec3(0., 0., 1.));
 }
 else
 {
 if(PI/4. <= theta && theta <= 3.*PI/4.)
 {
 normal = ToXyz(vec3(0., Height, Theight/4.));
 }
 else if(-PI/4. <= theta && theta <= PI/4.)
 {
 normal = ToXyz(vec3(Height, 0., Swidth/4.));
 }
 else if(-3.*PI/4. <= theta && theta <= -PI/4.)
 {
 normal = ToXyx(vec3(0., -Height, Theight/4.));
 }
 else if(theta >= 3.*PI/4. || theta <= -3.*PI/4.)
 {
 normal = ToXyz(vec3(-Height, 0., Swidth/4.));
 }
 }
 float intensity = Ambient + (1.-Ambient)\times dot(normal, DirToLight);
 vec3 litColor = SurfaceColor.rgb \times intensity;
 gl_FragColor = vec4(litColor, SurfaceColor.a);
}
Changing the Bump Height

Changing the Bump Density

It's Handy to not need a Program-supplied Tangent Vector

Combining Bump and Cube Mapping:
A Good Reason to Work in X-Y-Z instead of B-T-N