Generalized Bump-mapping with
Surface Local Coordinates

This work s licensed under a Creative Commons
i ivatives 4.0

License

Oregon State
University
Mike Bailey

mjb@cs.oregonstate.edu

Univ
Computcrrapnics
- 8 - Decomber 242023

12/28/2024

The Most Straightforward Types of Bump-Mapping are Height Fields 2
Why?

Height Field bump-mapping is straightforward because the underlying coordinate
system is constant. Each fragment'’s Z points up, each fragment’s X points right, etc.

N d: d:
Thus, the tangent vectors always involve ﬁ and ﬁ.

University
Computer Graphics
i Decomer 24 2025

What if that is not the case? Here, the coordinate system is 3
constantly changing, depending on where you are on the sphere

University
Computer Graphics
i~ Deceber 24,2023

This is referred to as Surface Local Coordinates 4

To call these moving axes X-Y-Z would be
confusing. Rather than X-Y-Z, Surface Local
Coordinates are B-T-N:

+ Nis the surface Normal vector, which we
usually know already

« Tis a Tangent vector

« Bis the Bitangent, the other tangent vector

We will assume that we know the Normal everywhere because of how the
shape was modeled. Now, how do we find T and B? And, how do we convert
| these to X-Y-Z?

Computer Graphics

i December 24,2023

Generalized Bump Mapping: A Problem 5

The problem is that we need to do lighting, but the lighting needs to
be done in X-Y-Z, but the bump information is in B-T-N!

We need to:
1. Figure out how to determine T and B, and,

2. Figure out how to convert B-T-N coordinates to X-Y-Z for
lighting

We will refer to the coordinates in the B-T-N system as (b,t,n). ‘

University
Computer Graphics

mib _ December 24,2023

Bump Mapping: 6
Establishing the Surface Local Coordinate System
We need a second piece of information: Pick a general rule, e.g., “Tangent = up (0.,1.,0.)”
We then have two choices:
a. Use two cross-products to correctly orthogonalize it wrt the Normal /

b. Use the Gram-Schmidt rule to correctly orthogonalize it wrt the Nor

Il the vectors B-T-N form an X-Y-;
Il right handed coordinate syst

vec3 N = normalize(gl_Nori
vec3 Tg, T; 1l Tgues
vec3 B;

IMdtrix * gI_Normal);
and corrected T

#define CROSS_PRODUCT_METHOD

#ifdef CROSS_PRODUCT_METHOD

Tg = vec3(0.,1.,0.)} Il guess at T
B = normalize(cross(Tg,N)); // correct B

T = normalize(cross(N,B)); // corrected T

#ifdef GRAM_SCHMIDT_METHOD

Tg = vec3(0.,1.,0.); I/l guess at T

float d = dot(Tg, N);

T = normalize(Tg - d*N); Il corrected T
University B = normalize(cross(T,N)); // correct B

Computer Graphics #endif

Dregon State

mib_ December 26, 2023

Cross Product Orthogonalization

vec3 Tg = vec3(0.,1.,0.); //initial guess
vec3 B = normalize(cross(Tg,N));
vec3 T =normalize(cross(N,B));

3 |

Given that N is correct, how

1 do we change Tg to be

Take the cross product of N
and B to get a T vector that
is perpendicula\to both

exactly perpendicular to N ?

[21] X N

Take the cross product of Tg N

and N to get a Buector that
is perpendiculaj%m\

Dregon State
University
Computer Graphics

T

i December 24,2023

Bump Mapping: Converting Between Coordinate Systems

Converting from X-Y-Z to b-t-n:

b B, By B;|(x
te=Tx T, T;|{y
n Ny N, Ny |\z

Converting from b-t-n to X-Y-Z:
X By Ty Ny|(b
ye=1|By Ty Nylit
z) |B, T, N,|n

| prefer to use the second one so we can do lighting

12/28/2024

Gram-Schmidt Orthogonalizati 8

vec3 Tg = vec3(0.,1.,0.); //initial guess
float d = dot(Tg, N); _l

vec3 T = normalize(Tg- d*N); 3

vec3 B = normalize(cross(T,N)); How much of Tg do we need
to get rid of so that none of it is

Tl ,Iin the same direction as N?
'

Given that N is correct, how _d/\',f
do we change Tg to be
exactly perpendicular to N?

™ The resulting T is
perpendicular to N

How much of Tg is in the
Drego| same direction as N?

Computer Graphics
i Decomer 24 2025

Generalized Bump Mapping: 10
Establishing the Surface Local Coordinate System

Vertex shader:

#version 330 compatibility
uniform vec3 uLightPosition;

outvec2 vST; J/texture coords
out vec3 WN; // normal vector

out vecd vL; Il vector from point to light

out vec3 VE; vector from point to eye
outvec3 vBTNx, vBTNy, vBTNzZ;

void
main()
{

N = normalize(gl_NormalMatrix * gI_Normal); I/ normal vector
vec3 Tg = vec3(0.,1.0.); I/ guess
vec3 B = normalize(cross(Tg,wN))
vec3 T = normalize(cross(vN,

I produce the transformation from Surface coords to Eye coo:

VBTNX = vec3(Bux, T, Wux)
VBTNy = vec3(By, Ty, Wy)
VBTNz = vec3(Bz, Tz, W.z) {
VST = gl_MultiTexCoordo.st; o [Fz _

Il sye coordinate position
J/ vector from the point to the light position
Ji vector from the point to the eye position

vecd ECposition = gi_ModelViewMatrix * gl_Vertex;

VL = uLightPosition - ECposition.xyz;

VE =vec3(0., 0., 0.) - ECposition.xyz;

gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

-
UJ’LI?FH b!‘\k’

‘University
Computer Graphics

i December 24,2023

Com‘;‘.‘;‘;‘,”o?apmcs in X-Y-Z like we are used to doing.
b~ Decemper 24, 2023
Generalized Bump Mapping: 1
Using the s-t-h to X-Y-Z Transform
Fragment shader:

#version 330 compatibilty
uniform vec3 uColor;

uniform vec3 uSpecularColor;
uniform float uKa, uKd, uKs;
uniform float ~ uShininess;
uniform float uBumpDensity;

Il coefiicients of each type of lighting
1/ specular exponent
1 density of bumps.

invec2 vST; 1/ texture cords
in vec3 WN; 1/ normal vector

in vec3 vL; 1 vector from point to light
in vec3 VE; 1 vector from point to eye

invecd VBTNx, VBTN, BTNz

vecd
ToXyz(vec3 btn)
{

btn = normalize(btn);
vec3 xyz; B T,

xyz.x = dot(vBTNx, btn); X xr X

Xyz.y = dot(BTNy, btn); yi=18, Ty
xyz.z = dot(vBTNz, btn); T

z

return normalize(xyz);
}

Look at this closely. It is actually a matrix-multiply!

University
Computer Graphics

Matrix Multiplication is Really Row-by-Row Dot Products 12

The basic operation of matrix multiplication is to pair-wise
multiply a single row by a single column

* % % 4
[1°2 3] *)5
A 6 c

—> 41 +52+63—> 32

B
1x3 3x1 1x1

iversity
Computer Graphics

i December 24,2023

i December 24,2023

Generalized Bump Mapping: Using the Surface Local Transform, | 13

void
main()
{

vec3 Normal = normalize(vN);

vec3 Light = normalize(vL);
vec3 Eye = normalize(vE);
vec3 myColor = uColor; 1 default color

I/ locate the bumps based on (s.t):

float Swidth = (1.-0.) / uBumpDensity; // s distance between bumps
float Theight 0.) / uBumpDensity; // tdistance between bumps
float numinS = int(VST.s / Swidth); I/ which "checker” square we are in

float numinT = int(vST.t / Theight); I which "checker" square we are in
vec2 center;
center.s = numinS * Swidth + Swidth/2.; // center of that bump checker

center.t uminT * Theight + Theight/2.; // center of that bump checker
vec2 st=VvST - center; II'stis now wrt the center of the bump

float theta = atan(st., st:s);

i December 24,2023

12/28/2024

Generalized Bump Mapping: Using the Surface Local Transform, Il 14

else

vec3 normal = ToXyz(Normal)); // un-bumped normal

if(abs(stp.s) > Swidth/4. || abs(stp.t) > Theight/4.)
{

normal = ToXyz(vec3(0.,0.,1.));

if(Pl/4. <=theta && theta <= 3.*PI/4.)

¢ normal = ToXyz(vec3(0., Height, Theight/4.));
)e\se if(-PI/4. <= theta && theta <= Pl/4.)

¢ normal = ToXyz(vec3(Height, 0., Swidth/4.));

)e\se if(-3.*Pl/4. <= theta && theta <=-Pl/4.)

¢ normal = ToXyz(vec3(0., -Height, Theight/4.));
)e\se if(theta >= 3*Pl/4. || theta <= -3.*Pl/4.)

normal = ToXyz(vec3(-Height, 0., Swidth/4.));

omputer Graphics

i December 24,2023

Generalized Bump Mapping: Using the Surface Local Transform, lil 15

vec3 ambient = uKa * myColor;
float d
float s = 0.

if(dot(normal,Light) > 0. // only do specular if the light can see the point
{

d = dot(normal,Light);
vec3 R = normalize(reflect(-Light, normal)); 11 reflection vector
s = pow(max(dot(Eye,R), 0.), uShininess);

vec3 diffuse = uKd * d * myColor;
vec3 specular = uKs * s * uSpecularColor;
gl_FragColor = vec4(ambient + diffuse + specular, 1.);

DregonState

University
Computer Graphics
i ~Decerber 24,2023

Dregon State
University
Computer Graphics

Changing the Bump Height

16

mib _ December 24,2023

Changing the Bump Density

DregonState

University
Computer Graphics

i December 24,2023

Dregon State

Computer Graphics

Different Objects

Cow Pox? :-)

18

mib _ December 24,2023

DregonState:
University
Computer Graphics

Combining Bump and Cube Mapping:
A Good Reason to Work in X-Y-Z instead of B-T-N

i December 24,2023

12/28/2024

Dregon State:
University
Computer Graphics

Combining Bump and Cube Mapping:
A Good Reason to Work in X-Y-Z instead of B-T-N

20

L

i December 24,2023

