
12/28/2024

1

mjb – December 24, 2023

1

Computer Graphics

Generalized Bump-mapping with
Surface Local Coordinates

SurfaceLocalCoordinates.pptx

Mike Bailey

mjb@cs.oregonstate.edu

This work is licensed under a Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0
International License

mjb – December 24, 2023

2

Computer Graphics

The Most Straightforward Types of Bump-Mapping are Height Fields
Why?

Height Field bump-mapping is straightforward because the underlying coordinate
system is constant. Each fragment’s Z points up, each fragment’s X points right, etc.

Thus, the tangent vectors always involve
ௗ௭

ௗ௫
and

ௗ௭

ௗ௬
.

mjb – December 24, 2023

3

Computer Graphics

What if that is not the case? Here, the coordinate system is
constantly changing, depending on where you are on the sphere

mjb – December 24, 2023

4

Computer Graphics

This is referred to as Surface Local Coordinates

To call these moving axes X-Y-Z would be
confusing. Rather than X-Y-Z, Surface Local
Coordinates are B-T-N:

• N is the surface Normal vector, which we
usually know already

• T is a Tangent vector

• B is the Bitangent, the other tangent vector

We will assume that we know the Normal everywhere because of how the
shape was modeled. Now, how do we find T and B? And, how do we convert
these to X-Y-Z?

mjb – December 24, 2023

5

Computer Graphics

Generalized Bump Mapping: A Problem

The problem is that we need to do lighting, but the lighting needs to
be done in X-Y-Z, but the bump information is in B-T-N!

We need to:

1. Figure out how to determine T and B, and,

2. Figure out how to convert B-T-N coordinates to X-Y-Z for
lighting

We will refer to the coordinates in the B-T-N system as (b,t,n).

mjb – December 24, 2023

6

Computer Graphics

Bump Mapping:
Establishing the Surface Local Coordinate System

// the vectors B-T-N form an X-Y-Z-looking
// right handed coordinate system:

vec3 N = normalize(gl_NormalMatrix * gl_Normal);
vec3 Tg, T; // Tguess and corrected T
vec3 B;

#define CROSS_PRODUCT_METHOD

#ifdef CROSS_PRODUCT_METHOD
Tg = vec3(0.,1.,0.); // guess at T
B = normalize(cross(Tg,N)); // correct B
T = normalize(cross(N,B)); // corrected T
#endif

#ifdef GRAM_SCHMIDT_METHOD
Tg = vec3(0.,1.,0.); // guess at T
float d = dot(Tg, N);
T = normalize(Tg - d*N); // corrected T
B = normalize(cross(T,N)); // correct B
#endif

We need a second piece of information: Pick a general rule, e.g., “Tangent ≈ up (0.,1.,0.)”
We then have two choices:
a. Use two cross-products to correctly orthogonalize it wrt the Normal
b. Use the Gram-Schmidt rule to correctly orthogonalize it wrt the Normal

12/28/2024

2

mjb – December 24, 2023

7

Computer Graphics

Cross Product Orthogonalization

vec3 Tg = vec3(0.,1.,0.); // initial guess
vec3 B = normalize(cross(Tg,N));
vec3 T = normalize(cross(N,B));

Take the cross product of Tg

and N to get a B vector that
is perpendicular to both

Given that N is correct, how
do we change Tg to be

exactly perpendicular to N ?
1

2

3
Take the cross product of N
and B to get a T vector that

is perpendicular to both

mjb – December 24, 2023

8

Computer Graphics

Gram-Schmidt Orthogonalization

How much of Tg is in the
same direction as N?

How much of Tg do we need
to get rid of so that none of it is

in the same direction as N?

Given that N is correct, how
do we change Tg to be

exactly perpendicular to N?

The resulting T is
perpendicular to N

1

2

3

4

𝑇 = 𝑇௚ − 𝑑𝑁෡ = 𝑇௚ − 𝑇௚ ȉ 𝑁෡ 𝑁෡

vec3 Tg = vec3(0.,1.,0.); // initial guess
float d = dot(Tg, N);
vec3 T = normalize(Tg - d*N);
vec3 B = normalize(cross(T,N));

mjb – December 24, 2023

9

Computer Graphics

Bump Mapping: Converting Between Coordinate Systems

𝑏
𝑡
𝑛

=

𝐵௫ 𝐵௬ 𝐵௭

𝑇௫ 𝑇௬ 𝑇௭

𝑁௫ 𝑁௬ 𝑁௭

𝑥
𝑦
𝑧

𝑥
𝑦
𝑧

=

𝐵௫ 𝑇௫ 𝑁௫

𝐵௬ 𝑇௬ 𝑁௬

𝐵௭ 𝑇௭ 𝑁௭

𝑏
𝑡
𝑛

Converting from X-Y-Z to b-t-n:

Converting from b-t-n to X-Y-Z:

I prefer to use the second one so we can do lighting
in X-Y-Z like we are used to doing.

mjb – December 24, 2023

10

Computer Graphics

Generalized Bump Mapping:
Establishing the Surface Local Coordinate System

#version 330 compatibility
uniform vec3 uLightPosition;

out vec2 vST; // texture coords
out vec3 vN; // normal vector
out vec3 vL; // vector from point to light
out vec3 vE; // vector from point to eye
out vec3 vBTNx, vBTNy, vBTNz;

void
main()
{

vN = normalize(gl_NormalMatrix * gl_Normal); // normal vector
vec3 Tg = vec3(0.,1.,0.); // guess
vec3 B = normalize(cross(Tg,vN));
vec3 T = normalize(cross(vN,B));

// produce the transformation from Surface coords to Eye coords:

vBTNx = vec3(B.x, T.x, vN.x);
vBTNy = vec3(B.y, T.y, vN.y);
vBTNz = vec3(B.z, T.z, vN.z);
vST = gl_MultiTexCoord0.st;

vec4 ECposition = gl_ModelViewMatrix * gl_Vertex; // eye coordinate position
vL = uLightPosition - ECposition.xyz; // vector from the point to the light position
vE = vec3(0., 0., 0.) - ECposition.xyz; // vector from the point to the eye position
gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;

}

Vertex shader:

mjb – December 24, 2023

11

Computer Graphics

Generalized Bump Mapping:
Using the s-t-h to X-Y-Z Transform

#version 330 compatibility
uniform vec3 uColor;
uniform vec3 uSpecularColor;
uniform float uKa, uKd, uKs; // coefficients of each type of lighting
uniform float uShininess; // specular exponent
uniform float uBumpDensity; // density of bumps

in vec2 vST; // texture cords
in vec3 vN; // normal vector
in vec3 vL; // vector from point to light
in vec3 vE; // vector from point to eye
in vec3 vBTNx, vBTNy, vBTNz;

vec3
ToXyz(vec3 btn)
{

btn = normalize(btn);

vec3 xyz;
xyz.x = dot(vBTNx, btn);
xyz.y = dot(vBTNy, btn);
xyz.z = dot(vBTNz, btn);

return normalize(xyz);
}

. . . Look at this closely. It is actually a matrix-multiply!

Fragment shader:

mjb – December 24, 2023

12

Computer Graphics

Matrix Multiplication is Really Row-by-Row Dot Products

A

B

C

The basic operation of matrix multiplication is to pair-wise
multiply a single row by a single column

 1 2 3
4

5

6

 
 
 
 
 

* → 32

* * *

→ 4*1 + 5*2 + 6*3

1x3 3x1 1x1

12/28/2024

3

mjb – December 24, 2023

13

Computer Graphics

Generalized Bump Mapping: Using the Surface Local Transform, I

. . .

void
main()
{

vec3 Normal = normalize(vN);
vec3 Light = normalize(vL);
vec3 Eye = normalize(vE);
vec3 myColor = uColor; // default color

// locate the bumps based on (s,t):
float Swidth = (1.-0.) / uBumpDensity; // s distance between bumps
float Theight = (1.-0.) / uBumpDensity; // t distance between bumps
float numInS = int(vST.s / Swidth); // which "checker" square we are in
float numInT = int(vST.t / Theight); // which "checker" square we are in

vec2 center;
center.s = numInS * Swidth + Swidth/2.; // center of that bump checker
center.t = numInT * Theight + Theight/2.; // center of that bump checker
vec2 st = vST - center; // st is now wrt the center of the bump

float theta = atan(st.t, st.s);
. . .

mjb – December 24, 2023

14

Computer Graphics

Generalized Bump Mapping: Using the Surface Local Transform, II

. . .
vec3 normal = ToXyz(Normal)); // un-bumped normal

if(abs(stp.s) > Swidth/4. || abs(stp.t) > Theight/4.)
{

normal = ToXyz(vec3(0., 0., 1.));
}
else
{

if(PI/4. <= theta && theta <= 3.*PI/4.)
{

normal = ToXyz(vec3(0., Height, Theight/4.));
}
else if(-PI/4. <= theta && theta <= PI/4.)
{

normal = ToXyz(vec3(Height, 0., Swidth/4.));
}
else if(-3.*PI/4. <= theta && theta <= -PI/4.)
{

normal = ToXyz(vec3(0., -Height, Theight/4.));
}
else if(theta >= 3.*PI/4. || theta <= -3.*PI/4.)
{

normal = ToXyz(vec3(-Height, 0., Swidth/4.));
}

}

. . .

mjb – December 24, 2023

15

Computer Graphics

Generalized Bump Mapping: Using the Surface Local Transform, III

. . .

vec3 ambient = uKa * myColor;
float d = 0.;
float s = 0.
if(dot(normal,Light) > 0. // only do specular if the light can see the point
{

d = dot(normal,Light);
vec3 R = normalize(reflect(-Light, normal)); // reflection vector
s = pow(max(dot(Eye,R), 0.), uShininess);

}
vec3 diffuse = uKd * d * myColor;
vec3 specular = uKs * s * uSpecularColor;
gl_FragColor = vec4(ambient + diffuse + specular, 1.);

}

mjb – December 24, 2023

16

Computer Graphics

Changing the Bump Height

mjb – December 24, 2023

17

Computer Graphics

Changing the Bump Density

mjb – December 24, 2023

18

Computer Graphics

Different Objects

Cow Pox? :-)

12/28/2024

4

mjb – December 24, 2023

19

Computer Graphics

Combining Bump and Cube Mapping:
A Good Reason to Work in X-Y-Z instead of B-T-N

mjb – December 24, 2023

20

Computer Graphics

Combining Bump and Cube Mapping:
A Good Reason to Work in X-Y-Z instead of B-T-N

