What is Bump-Mapping?

Bump-mapping is the process of creating the illusion of 3D depth by using a manipulated surface normal in the lighting, rather than actually creating the extra surface detail.
The Most Straightforward Type of Bump-Mapping is Height Fields

Definition of Height Fields -- Think of the Pin Box!
terrain.vert

#define 330 compatibility

out vec3 vMCposition;
out vec3 vECposition;
out vec2 vST;

void main() {
 vST = gl_MultiTexCoord0.st;
 vMCposition = gl_Vertex.xyz;
 vECposition = (gl_ModelViewMatrix * gl_Vertex).xyz;
 gl_Position = gl_ModelViewProjectionMatrix * gl_Vertex;
}

terrain.frag

#define 330 compatibility

uniform float uLightX, uLightY, uLightZ;
uniform float uExag;
uniform vec4 uColor;
uniform sampler2D uHgtUnit;
uniform bool uUseColor;
uniform float uLevel1;
uniform float uLevel2;
uniform float uToI;
uniform float uDelta;

in vec3 vMCposition;
in vec3 vECposition;
in vec2 vST;

const float DELTA = 0.001;

const vec3 BLUE = vec3(0.1, 0.1, 0.5);
const vec3 GREEN = vec3(0.0, 0.8, 0.0);
const vec3 BROWN = vec3(0.6, 0.3, 0.1);
const vec3 WHITE = vec3(1.0, 1.0, 1.0);

const float LNGMIN = -579240./2.; // in meters, same as heights
const float LNGMAX = 579240./2.;
const float LATMIN = -419949./2.;
const float LATMAX = 419949./2.;
void main() {
 vec2 stp0 = vec2(DELTA, 0.);
 vec2 st0p = vec2(0., DELTA);
 float west = texture2D(uHgtUnit, vST-stp0).r;
 float east = texture2D(uHgtUnit, vST+stp0).r;
 float south = texture2D(uHgtUnit, vST-st0p).r;
 float north = texture2D(uHgtUnit, vST+st0p).r;
 vec3 stangent = vec3(2.*DELTA*(LNGMAX-LNGMIN), 0., uExag * (east - west));
 vec3 ttangent = vec3(0., 2.*DELTA*(LATMAX-LATMIN), uExag * (north - south));
 vec3 normal = normalize(cross(stangent, ttangent));
 float LightIntensity = dot(normalize(vec3(uLightX,uLightY,uLightZ) – vMCposition), normal);
 if(LightIntensity < 0.1)
 LightIntensity = 0.1;
 if(uUseColor)
 {
 float here = texture2D(uHgtUnit, vST).r;
 vec3 color = BLUE;
 if(here > 0.)
 {
 float t = smoothstep(uLevel1-uTol, uLevel1+uTol, here);
 color = mix(GREEN, BROWN, t);
 }
 if(here > uLevel1+uTol)
 {
 float t = smoothstep(uLevel2-uTol, uLevel2+uTol, here);
 color = mix(BROWN, WHITE, t);
 }
 gl_FragColor = vec4(LightIntensity*color, 1.);
 }
 else
 {
 gl_FragColor = vec4(LightIntensity*uColor.rgb, 1.);
 }
}

Terrain Height Bump-mapping: Exaggerating the Height

No Exaggeration

Exaggerated
Terrain Height Bump-mapping: Coloring by Height

No Exaggeration

Exaggerated
Terrain Height Bump-mapping: Even Zooming-in Looks Good

Crater Lake

Portland
Salem
Corvallis
Eugene

Several textures are being mixed onto the surface of the globe

Visualization by Nick Gebbie
The Second Most Straightforward Type of Bump-Mapping is

Height Field Equations

This is the coordinate system we will be using. The plane is X-Y with Z pointing up.

\[z = A \cos(2\pi B r + C) e^{-Dr} \]

Radial-ripple equation with height decay

\[
x_{tangent} = \text{vec}(3, 0, \frac{\partial z}{\partial x}) \quad y_{tangent} = \text{vec}(0, 1, \frac{\partial z}{\partial y})
\]

\[
\frac{\partial z}{\partial x} = \frac{\partial z}{\partial r} \frac{\partial r}{\partial x} \\
\frac{\partial z}{\partial y} = \frac{\partial z}{\partial r} \frac{\partial r}{\partial y}
\]

\[
\frac{\partial^2 z}{\partial r^2} = -A \sin(2\pi B r + C)(2\pi B) e^{-Dr} + A \cos(2\pi B r + C)(-D) e^{-Dr}
\]

\[
r^2 = x^2 + y^2
\]

\[
2r \frac{\partial r}{\partial x} = 2x \\
2r \frac{\partial r}{\partial y} = 2y
\]

\[
\frac{\partial r}{\partial x} = \frac{x}{r} \\
\frac{\partial r}{\partial y} = \frac{y}{r}
\]
The Second Most Straightforward Type of Bump-Mapping is Height Field Equations

You can sum the individual height field equations and get a result similar to that of summing the height field displacements.

Combining Bump and Cube Mapping